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Summary

A new, generally applicable, technique is described for constructing
solutions of a coupled linear system of partial differential equations
when a decoupled equation has been derived. This method has already
yielded an extremely simple derivation of pe;turbation formulas given
by Cohen and Kegeles and by Chrzanowski as well as new formulas for the
complete solutions of the coupled Einstein-Maxwell equations describing
Reissner-Nordstrom perturbations. It is hope’that it will prove valuable

for many other applications.
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Perhaps the greatest obstacle to a better understanding of classicgl
general relativity is the difficulty of obtaining solutions of the field
equations. Although some very inte;esting and physically relevant
solutions are known, essentially all known solutions possess a high
degree of symmetry. Aside from some rather vague (though quite important)
conclusions that can be drawn from the singularity theorems, we really
have very little idea of what occurs in generic situationms.

However,bit frequently happens that one wishes to describe a situation
where the deviations from a known solution are expected to be small and
perturbation theory can be justified as a satisfactory approximationm.

Prime examples are studies of the behavior of small departures from exact
cosmologi;al models and from exact black hole solutions. The equations
describing the perﬁurbations are linear and the major obstacle of dealing
with nonlinear equations is thereby avoided. Nevertheless, the linearized
equations describing metric perturbations form such a comélicated coupled
system that they are virtually intractable. Even in the simplest cases

- the Friedman cosmology and the Schwarzschild black hole - major efforts
were required to give a complete analysis of the solutions by direct means.

Fortunately, in a case of great interest - the Kerr black hole - it

(1)

ﬁéé possible for Teukolsky to derive from the full electromagnetic
perturbation equations a decoupled equation for the Newman-Penrose

Maxwell tensor component 960 , and from full gravitational perturbation
equations a decoupled equation for the Newman-Penrose quantity Vt .

These derivations, in fact, work for all algebraically special vacuum
spacetimes in the gravitational case and for .a somewhat wider class of space-

times in the electromagnetic case. Many quantities of physical interest

such as radiation fluxes can be calculated directly from ?% and 7;
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and the derivation of decoupled equations for them represented a real
breakthfough. However, $4> and y; | give only partial information
concerning many interesting questions concerning the behavior of the
perturbed metric or electromagnetic field. A direct integration of the
remaining field equations to solve for the complete perturbations in the
Kerr case required a further major effort which was completed only
recently by Chandrasekhar (2).

However, not long after Teukolsky's results were obtained, Cohen

(3)

and Kegeles - gave a prescription for constructing complete solutions

of the electromagnetic perturbation equations, Their prescription works

in precisgly those cases for which Teukolsky's derivation applies. Further-
more, in the type D case, where there are two Teukolsky equations (for ﬁo
and ;41 ), the Cohen-Kegeles equation used in the constructive procedure

is just one of the Teukolsky equations, This strongly suggests a close
relation between the Teukolsky and the Cohen-Kegeles results. However,

in the more general cases where there is only one Teukolsky equation, the
Cohen-Kegeles equation is not the Teukolsky equation and, unfortunately,

the complicated nature of the Cohen-Kegeles derivation makes it difficult

to obtain further insight.

(4)

Very soon after this work of Cohen and kegeles, Chrzanowski in

his study of electromagnetic and gravitational éerturbatiohs of the Kerr
metric made an ad hoc hypothesis that the full Green's functions for these
equations could be expressed in a certain factorized form. This assumption
led to formulas for the complete vector potential and metric perturbations
of Kerr. The vector potential perturbations-agreed precisely with the
Cohen-Kegeles formulas. Chrzanowski partially checked his formula for

the metric perturbations of Kerr by substitution in the linearized field
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equations. His formula passed all the tests he tried, but the algebra
proved so messy that the complete field equations were not checked.
Encouraged by these results, Chrzanowski conjectured a formula for the
metric perturbations of an arbitrary algebraically special vacuum space-
time - precisely the case where Teukolsky's derivation of a decoupled
gravitational equation applies - reasoning by analogy with his Kerr formula
and the general Cohen-Kegeles electromagnetic formula. Very shortly there-
after, Cohen and Kegeles gS? gave the same formula., Neither Chrzanowski
nor Cohen and Kegeles ever published a proof that this formula is correct.

The above work raises a number of intriguing questions: What is the
relation (if any) of the constructive procedures of Cohen-Kegeles and of
Chrzanowski to the decoupled equation of Teukolsky? Why is the equation
used in the constructive procedure the same as one of the Teukolsky
equations in the type D case but different from it in othgr cases? How
general is this constructive method; is it special to the specific equations
under study (as the derivations of Cohen-Kegeles and of Chrzanowski
certainly seem to indicate) or is it applicable for a large variety of
equationsf

The main purpose of this essay is to give a simple answer to these

quesiions. We shall show that the existence‘of the constructive procedure
is intimately related to the existence of a decoupled equation. Wé will
thereby be able to give an elementary proof of the Cohen-Kegeles -
Chrzanowski (CKC) formulas. New applications of the general method will
also be mentioned.

The key to understanding the relation of}Teukolsky's derivation and
the CKC formulas is a simple observation concerning the nature of Teukolsky's

derivation. Let S' denote the unknown variables (i.e. either the vector
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,Po_tential A,A or the metric perturbation \/\,,.y Y. These variables

S’ satisfy an equation

tS§ =0 (1)

where E— is a linear partial differential operator. The decoupled
wvariable ¢ (i.e. either 9{0 or ‘7‘; ) is given by a linear partial

differential operation ) on ¥ ’

¢= J ¥ (2)

Teukolsky's equation, namely,

Og =0 (3)

where U is another linear partial differential operator, is derived
by performing linear partial differential operatioms ,g—- on equation (1).
Inspection of Teukolsky's derivation thus shows that it actually proves

the operator identity

LE = TL | (4)
(so that £5 =0 implies 5(_"21':9] =0).

Suppose, now, that an operator identity of the form equation (4) has

- )

been proven. Taking the adjoint of equation (4) we find
Tet _ Tt
€4 = L U (3)
Let % be a solution of
Tye -
'vy=0 | (6)
Applying both sides of equation (5) to \/' , we find

£ (8 =0 o
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Hence, if EL is self-adjoint, as it is for the Maxwell, linearized

Einstein, and other equations of physical interest, the quantity

s= 3¢ (8)

is a solution of equation (1). Equation (6) is, in the appropriate cases,
Qquation
precisely the CKCAgnd equation (8) is precisely their perturbation formula!
Thus a direct connection has been obtained between the derivation of .
a decoupled equation and the existence of a constructive procedure for
generating solutions of the full system of equations. Furthermore, an
explanation why the CKC equation reduces to the Teukolsky equation in the
type D case but not otherwise can be given. In all cases, the CKC equation
is the adjoint of the Teukolsky equation. However, it happens that in the
type D case, the adjoint of the Teukolsky operator for 965 is just the
Teukolsky operator for 562 and the adjoint of the operator for V; is
the operator for y: . This fact also explains the’remarkable differential
identities ("Starobinski-Teukolsky relations'") which were known to exist
between ¢0 and SZS:_ and between t and 'f; for Kerr perturbationms.
The above resu1ts prove that the operator :f ,JZ maps solutions for the

Se,c.o\d.a-a variable into solutions for the Fivst, 4 o .1

As shown in

(6)

more detail elsewhere , these Starobinski-Teukolsky relati&ns exist for
perturbations of all vacuum type D spacetimes.
While the above ideas give an elegant explanation of some o0ld results,
the greatest potential utility of these ideaé lies in new applications.

(7)

Chandrasekhar has derived decoupled equations from the eQuations

describing perturbations of a Reissner-Nordstrom black hole. Very recently
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the constructive précedure arising from this decoupling has been used

to generate the full solutions of the coupled Einstein-Maxwell system(s).
It is worth emphasizing the general applicability of this method. All
that is needed is the operator identity of the form equation (4) and it
is not necessary, for example, that the decoupled equation be a single

(2)

-equation for a single variable. Thus, for example, Chandrasekhar has
-obtained a decoupled system of four equations in four unknowns for
perturbations of a Kerr-Newman black hole. = Solutions of the adjoint

system could be used to comstruct solutions to the full system of equations
by this method. These and other applications may help give us more insight

into the behavior of solutions which deviate only slightly from known exact

solutions.
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