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The Oppenheimer limit on the mass of a cold star can be exceeded by
models in which a small core of steeply decreasing density is surrounded
by a ld}ge envelope of "ordinary" matter, Such models agree with Einstein's
theory of gravity if matter under high pressure consists of heavy particles,

formed from baryons by many-body forces and here called multi-baryons,

. A gravitational collapse, forcing us to abandon the law of baryon conserva-

tion, is thus avoided,

) Fes




1. Gravitational Collapse

If a static stellar model consists mainly of neutrons at vanishing

temperature, its total mass M_ cannot exceed

(1) M, =~ 0.7 * M, ,

where M0 is the solar mass, The related values of central density and

stellar radius are

4

(2) fo ~ (n * o,

nucleon

(3) r, =~ 10 km .

[We employ units defined by A = c =1 , hence the density has the
dimension of the fourth power of a mass,] For an g, below and above (2),

r, goes above and below (3), but such that M*_decreases in both cases;

All this was found !’ by Oppenheimer and coworkers; hence (1) is
called Oppenheimer's mass limit, It was confirmed in extensive computations 2)

by Wheeler and coworkers. Since many stars have masses above (1), it seems

; ' 3)
that they must somehow reduce these when cooling off, It was speculated
that stars losing so much mass might explain the quasi stellar radio sources,
which/ radiate enormous energies, Therefore, the "gravitational collapse”

5)

k&)
was recently much discussed, although its connection to observations

could not be established,



2, Massive Stellar Models

According to Wheeler 2), the instability of cold stars with masses above
(1) even requires abandoning the conservation of baryons, For explaining this
conclusion more directly, Wheeler é) simplified the derivation of Oppenheimer's
1imit (1), He remarked that a uniform density € causes a certain curvature
of space which limits the occhpied volume and thus the total mass M, .,

If « 1is the gravitational constant, one gets roughly
agy~ %
(l) M, < (n%) .

With the "nuclear" density (2), this yields again (1), while higher & make
(L) even smaller,

Although these striking arguments é) presume a homogeneous density, they
can qualitatively be trusted for any star in which g shows a moderate

spatial variation, This is true for all the usual models, in which a polynomial
(5) S(l‘) = go +$11'2 +92r4 + e e e

(of low order) approximates € even at large distances from r =0 .
Thus tﬁe limit (1) and hence the "collapse" of more massive stars seem
inescapable,

However, static models of such stars are nevertheless possible, if

their density is approximately 7

(6) e(r) = (¢/r)? Ey * € ]



The constant €g denotes the density of ordinary solids (~ 10 g em™®), 2

=33

the "elementary" length of gravity (a~ 10 some high density,

cm) and g,

up to the "gravitational® unit (~ 10°° ¢ ). Near the center, (6) is so
steeply variable, that Wheeler's theorem (L) is certainly not applicable there,
But just this steep decrease makes the superdense core of our model so small
that almost the total stellar mass M, is contained in a large envelope of

densities about €. . For Wheeler's ) theorem (L), the whole star can

therefore be considered as having ¢ = g - For its maximal mass ‘ﬁ; ,

this rough estimate gives

(7) M, < (n:‘ss)"i ~ 10% - M )

clearly exceeding Oppenheimer's limit (1),

3. The Multi-Baryons

A density variation as steep as (6) contradicts Einstein's gravitational

1) that cold matter at any density above (2)

theory, if one assumes as usual
consists of simple baryons, In this case, the equation of state at vanishing

temperature and high pressure p becomes

»

(8) € = 3p+myp with m m
nucleon ’

making (6) impossible, There is, however, no reason for the stability of

single baryons under high pressure, Since a sufficient pressure favors

neutrons above their decay products, why cannot much higher pressures produce

even heavier particles?



At "ordinary" pressures, such massive states may be highly unstable;
and the rates of their formation (cross sections) may be very small, This
is irrelevant for our static problem, but would make it difficult to detect
those particles directly. One might compare them with many metastable states
in chemistry, which are better accessible since the needed pressures (law of
mass action) are less than "nuclear" ones,

The unstable states concerned here deqay under lower pressure into

many baryonsj therefore let us call them multi-baryons, Compared with atomic

nuclei of corresponding baryon numbers, they must be spatially much smaller
because the density even of the whole stellar core highly exceeds that of
"nuclear" matter, HNone of those multi-baryons can be stable, otherwise they
might occur in ordinary matter, Some will be electrically charged, but the
positive and negative ones must occur in equal densities. because no compensating
electrons are present under high pressures, Possibly, the "resonances" observed

8)

in the scattering of baryons on baryons already indicate the simplest of

our multi-baryons,

ly, Many-body Forces

Forces strong enough for producing multi-baryons can be expected from the
cyclicaexchange of quanta among several particles, In ordinary matter, those
"many-body forces" are unimportant because simultaneous close encounters of
several particles happen seldom, But they will exceed the usual "two-parﬁicle
forces" at hipgh densities because they superpdse non-linearly., If we assume
the average multi=baryon to contain as many single baryons as one finds within

the range of that many-body force which is strongest at the density € , its

mass becomes



(9) m = const - m2.¢ y
where m, is the mass of the exchanged quanta, If this m, varies

like m (the force quanta are the multi-baryons themselves), (9) yields

(10) ma~ Yy vVE N Y =~ 1 .

Here, the constant, y 1is such that m Dbecomes the nucleon mass if ¢
equals the "nuclear" density (2).

Inserting (10) in (8) yields & = const ¢« p ., Accepting this for
all high pressures including that of a neutron gas, one has merely to add

the density e of the solid state, which persist at vanishing pressure.

Thus assuming

(1) € = a-p + £, o = const > 3 ,

one finds 7) that Einstein's equations are solved in good approximation by

(6); and also the new limitation (7) of the total mass results again,

5. Difficulties and Refinements

d2)

Actually, one should use at low pressures a more detaile equation

of state, which requires modifying (6) and hence (7) by numerical computations,
When these were performed by Misner and Zapolsky & y  the old Oppenheimer
1imit (1) was found, But this happened because (11) was used only at densities

well above the "nuclear" ones, Just in the decisive region of these densities

) assumed the usual neutron gas, Moreover,‘it is

- . 3 . 90
certainly difficult to integrate numerically over densities varying by {0 .

themselves, those authors ®



Another difficulty is that Einstein's equations, if solved by (6) down
to r = 0 , imply a definite relation between €, and the constant o
of (11), thus allowing only one stellar model for a given equation of state,
Always regarding this conclusion 7 as unphysical, we formerly stated v
that the center of the star, where (6) is mathematically singular (though
integrable), cannot be treated macroscopically, This is especially true
because (10), the average mass of the multi-baryons, grows toward r = O
so strongly that only a few are in a central region of some gravitational
units in diameter, This region should be treated by a quantum theory which
does not yet exist for such a situation (heavy particles in very strong,
continual interaction and under enormous gravity).

Therefore , \uév better consider another model, which can be treated
entirely by macro-physics, though only numerically, Very near the center,
we assume the density behavior (5), allowing an arbitrary central density &, .
If this is chosen high enough, while (1) is the equation of state, the solution
starting as (5) will soon go over into (6). As discussed above, this yields
a small core of steeply decreasing density and a vast envelope of “ordinary"
matter, which contributes almost the total mass M o Computations for

*

models of this type are in progress,

6. Quantum Statistics

Being suggested by the forces creating multi-baryons, (10) is also
distinguished by simplicity because it does not involve any constant (except

¢ = A = (). Every other relation m = m(p) must, in order to yield (2),



at least contain the nucleon mass and the "nuclear" density. In spite of
this, (10) might only be a limiting case of possible relations for the average
mass of a multi-baryon (a stronger variation leads to difficulties), Actually,
this question and that for the equation of state must be treated anew by
statistics, It was certainly inconsistent merely to plug (10) into (8),
which holds for particles of uniform mass,

From the quantum statistics' of relativistic particles, one easily

1) the correct formalism for a gas in which none of the particle

derives
numbers, but only the total baryon number is conserved (besides energy and
momentum), This formalism involves the masses mg of the particles with
any baryon number b and their multiplicitieé ' gy - If one assumes
simple power laws for the dependence among m, 8 and b , an approxi-
mate evaluation shows a weaker increase of m with ¢  than in (10);

but we find !’ again an equation of state like (11), Only this, especially
the absence of terms such as the last one of (8), is important for the
possibility of very massive stars,

All these details of models with vanishing temperature may find adequate
treatment, if one performs the required camputations. Before any comparison
with observations one should, however, establish models with different
temperatures, Thus one must also consider the generation and transformation

of those energies, which flow through the star and finally appear as its

radiation (from radio waves up to y - rays),
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