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Abstract

Initial data for general relativity may be such that there are trappéd
surfaces on a spatial initial data surface. Penrose has proposed that if the
cosmic censorship hypothesis is true, the ADM mass M of asymptotically
flat initial data and the area A of the outermost apparent horizon surface
should satisfy the inequality A < 167 M?2. Initial data which does not satisfy
this inequality may be viewed as providing a counterexample of the cosmic
censorship conjecture. We describe initial data that appears to violate this

inequality.
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A well known open problem in classical general relativity is the cosmic censorship con-
jecture. In general terms, this conjecture states that if spacetime singularities arise in a
“physical” context, they are always shrouded by event horizons [1,2].

The “physicality” of the context usually takes the form of finite energy-momentum. This
restricts consideration to spacetimes which are asymptotically flat at spatial and null infinity,
because these boundary conditions allow unambiguous definition of the energy and momen-
tum of the gravitational field. An additional physical condition is that matter should be
“resonable.” This is taken to mean that matter should satisfy at least the weak, and prefer-
ably the dominant energy condition. The last condition requires positive energy density and
timelike or lightlike energy fluxes.

An essentially equivalent way of stating the asymptotic conditions is to impose restric-
tions on the initial valué data for spacetime: The initial data on a spatial surface, consisting
of the gravitational variables (gqs, 7°°) and matter variables (¢, P,;) should be asymptotically
flat. For example, a spherically symmetric shell of electromagnetic matter with flat interior
and Schwarzschild exterior would be considered physical. The cosmic censorship conjecture
then states that under evolution, such initial data cannot give rise to a naked singularity.

Stated this way, it appears that full time evolution of initial data is required to determine
if the cosmic censorship hypothesis holds in any given example. This would make it rather
difficult to test cosmic censorship. Luckily however, there is a simpler test due to Penrose,
which uses initial data alone [3]. This test is based on a reasonable physical picture.

It is known that trapped surfaces form in regions of sufficiently strong gravitational
field. Therefore, as initially diffuse matter collapses under gravity, there is a possibility that
trapped surfaces will form as the collapse proceeds. If this happens, then on a sufficiently
late time spatial surface, there will be a boundary that separates the trapped region from
the normal region. This is the apparent horizon surface. As matter continues to collapse,
the area of this boundary grows until a portion, or all of the matter has collapsed. In the
long time static or stationary limit, the area of the apparent horizon surface tends to the

area of the event horizon. This physical picture suggests Penrose’s inequality
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A(S) < Ag < 167M%, (1)

on any spatial slice of the spacetime containing trapped regions; A(S) is the area of the
apparent horizon surface, Ag is the area of a surface that bounds S, and M is the ADM
mass of the initial data.

This inequality has successfully passed many tests [4]. The most general of these is

@ — 0, known as time-

a theorem [5] that rules out data which includes the condition #
symmetric data. However, there is now an example of naked singularity formation from
time-symmetric initial data for the spherically symmetric Einstein-scalar field system [6].
This initial data is finely tuned and appears to be a set of measure zero. In particular, it
appears to evade at least the intuition behind the initial data test.

In this essay, we give a class of time-symmetric and asymptotically flat initial data for
gravity coupled to a scalar field. We show that there are ranges of parameters in this data
for which Penrose’s inequality appears to be violated. This suggests that it may constitute

a counterexample of the cosmic censorship conjecture.

The initial value constraints for scalar field coupling are
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where (¢, P) are the scalar field phase space variables, and D, is the covaraint derivative
satisfying D,qp. = 0.
Consider three-space to be R3. An ansatz leading to a solution of these constraints in

spherical symmetry is
P=0, #*=0, qu=9"r)a, (4)

where §o, = diag(1, 7%, r%sin’§) is the flat metric. The initial scalar field ¢ is arbitrary at this
stage. This ansatz solves the spatial diffeomorphism constraint. The Hamiltonian constraint

becomes
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Vi + 2 (0:0)" 9 = 0. (5)
Now, for ¢(r) = v/2 C/r where C is a constant, the solution of the Hamiltonian constraint
is

¥(r) = A cos (zgr) + B sin (2—(1) , | (6)

where A and B are integration constants. This solution gives an asymptotically flat spatial
metric. For large r, A can be identified as a constant conformal factor, and so can be set
to unity. The ADM mass M is determined by both the “geometric” parameter B and the
“matter” parameter C via M = BC. The next order term (1/r?) is determined entirely by
C. The spatial metric has a curvature singularity at R(r) = r¢*(r) = 0. This two parameter
solution is the one we will use to test Penrose’s inequality.

In spherical symmetry the apparent horizon equation is g*?8,R0sR = 0, where g,g is

the spacetime metric. Furthermore, the inequality (1) reduces to the simple form
Ran < 2M, (7)

where R4y denotes the radius of the apparent horizon sphere. For the above time-symmetric

ansatz, the apparent horizon equation is
¥+ 2rd, = 0. | (8)

This equation is easy to solve numerically for 3 given by (6). There are an infinite number
of positive real solutions because of the sinusoidal behaviour. Thus, there are an infinite
number of apparent horizons! For the initial data test, we are interested in the horizon with
largest r.

By probing the two parameter space (B,C), we find that there appear to be regions
where Penrose’s inequality is violated. One such region is at and near the point (0.01, 2.00).
At this point 2M — R,y = —0.286. Larger violations of the inequality also occur. For
example, at the point (0.01,10.0), 2M — Rsy = —1.43.



Why is this happening? The scalar field amplitude C plays two roles in this solution: it
determines the period of oscillations in 9, and partly determines the ADM mass M (= BC).
The first can have a significant affect on the (local) apparent horizons, as may be seen by
varying C for fixed B. Now, Penrose’s inequality may be viewed as providing a “correlation”
between local (R4y) and global (M) quantities. The solution presented here appears to
indicate that local oscillations affecting apparent horizon size can become “uncorrelated”
with a global quantity such as M, which measures an average.

What does this result imply for the cosmic censorship conjecture? In a recent review
Wald states [4]: “ ... Failure of this inequality in any example would be nearly fatal to cosmic
censorship, as only a few small loopholes would remain — such as the possible ‘unsuitability’
of ... matter, the poésibly ‘non-generic’ nature of the example, and the (very remote)
possibility that the black hole does not become asymptotically stationary.”

The matter used in the example above is manifestly physical in the sense of energy
conditions. Furthermore, the solution forms a significant set which does not appear to be
non-generic. Thus, barring the last “very remote” possibility, which can apparently only
be tested by full evolution of initial data, this result suggests that the cosmic censorship
conjecture may be false.

A numerical evolution could perhaps be used to further test the result. It would require
setting up non-singular data. This may be done for the data given here by patching flat
space in the inner region from r = 0 to some 7 = a. The outcome would undoubtedly be

interesting.
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Note added: A few weeks after this essay was submitted, it was pointed out to me by

Ted Jacobson that the apparent horizon in the above calculation lies in a region which is



disconnected from the asymptotically flat region; ie. the conformal factor ¢ gdes to zero
at a point outside the horizon. Whether this point is a spacetime curvature singularity is
not clear, because the scalar field is singular only at » = 0. Based on this observation, the

answer to the title question, for the specific initial data considered in this essay, is “No.”
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