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Abstract.

It is shown that quantum effects cause a black hole to radiate like a body

with temperature of the order of 1026M—1 °k where M ~is the mass of the

black hole in grams. This thermal radiation means that black holes have a

finite life of the order of 10;29M3 secs.
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The classical theory of general relativity predicts that when a body of mass
. 2
M collapses to within the Schwarzschild radius 2GM/c , the gravitational

1)

field becomes so strong that no further light can escape. An observer at infinity

A
would never actually see the body fall within the Schwarzschild radius,' Instead,
it would appear to him to slow down and hover just 6utside while the redshift
increased and the luminosity decreased exponentially. In a few milliseconds
alllthat remains is an object which is effectively completely black but which
still possesses the same gravitational field as the body that collapsed. Such
an object is called a '"black hole" and its boundary, the boundary of the region
of space-time from which nothing can escape to infinity, is called the "event
horizon". According to the classical theory, the area of this event horizon
can never decrease and will increase as more matter or radiation fall into the
black hole (Hawking 1971 1972, 1973). This result, which has been célled the
‘Second Law of black holes (Bardéen, Carter and Hawking 1973), means that one
cannot recover the rest-mass energy of the original body, apart from the fraction
(less than 29%) which may be extracted as the rotational energy of the black
hole.

The classical theory of general relativity ﬁust, however, be regafded as
only an approximation to a deeper quantum theory of space-time. 1In such a theory
one would not expect the space-time metric to be defined exactly but to have on
a length-scale L an uncertainty or fluctuation of the order of LO/L where Lo is
the Planck length 10_33 cm. These quantum fluctuations of the metric will

mean that the event horizon will not be defined exactly. It is therefore

possible for energy and radiation to tunnel out of the black hole and to

escape to infinity, thus causing the hole to appear not completely black. I
shall show that this quantum mechaniéﬁl emission from so-cailed "black'" holes
takes place at a steady nonzero rate. As one might expect from the '"no-hair"
theorems, this rate depends only on the mass M, the angular momentum J and the

electric charge Q. More remarkably, the flux and the spectrum of the emitted



radiation are exactly what one would get if the black hole were an ordinary body
with a temperature>of 5EF' in units such that G = ¢ = 1 where K is the

surface gravity of the black hole and is equal to
(% -3
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(Bardeen, Carter and Hawking 1973). Although surprising, this result fits in

-

very nicely with the correspondence between thermodynamics and black hole mechanics
that has been pointed out by Bekenstein (1973) and by Bardeen, Carter and Hawking
(1973). The starting point for this cofrespondence is the obvious resemblance
between the‘second law of thermodynamics and the law that, classically at least,
the area A of the event horizon can never decrease. There is also an analogy
with the first law of thermodynamics in the result that two heighbouring black

hole equilibrium states are related by

dM = £ dA+ QAT+ PaQ
3T

where {2 and qb are respectivély the angular velocity and electrostatic potential
of the black hole (Carter 1973). Comparing this to |
du = TdS + Pdv
one sees that, if the area A 1is associated with entropy, then the surface
gravity K must be associated with temperature. Indeed Bekenstein suggested
that some multiple of K  should be regarded as the temperature of the black
hole and he postulated a '"Generalised Second Law": eﬁtropy plus some multiple
of area never decreases. However he did not specify the multiple and he did not
suggest that black holes could emit radiation as well as absorbing it. 1In the
absence of such emission the Generalised Second Law would be violated by a
black hole immersed in black body radiation at a lower temperature: the increase
’of area caused by absorption of the radiation would be insufficient to counter-
balance the loss of entropy down the black hole. This violation is removed if
one accepts that black holes emit thermal radiation with a temperature of Z;;- .

T

The Generalised Second Law then becomes: S + A/4 never decreases.



The quantum ﬁechanical emission of radiation by black holes is the direct
analogue of the particle creation that occurs in flat space-time in the presence
of a deep potential well of some extermal field such as an electromagnetic
field. This process is fairly well understood and has been discussed by a
number of authors. One way of visualising it is as foliows. In a deep potential
well there will be particle states with negative energy with respect to infinity.
It is therefore possible to have spontaneous creation of pairs of particles,
one particle having positive energy can escape to infinity while the other
particle having negative energy remains in the potential well. The situation
with black holes is very similar: a black hole is a deep well in the gravitational
field inside which there are particle states with negative energy with respéct
to infinity. The difference between black holes and potential wells in flat
space-time is that in the black hole case the region containing negative energy
states is separated from infinity by the event horizon. One therefore has to
think of the negative energy particle tunnelling into/the black hole from the
classically forbidden exterior region. Equivalently, one could think of tﬁe
creation as taking place inside the hole with the positive energy particle
escaping through quantum fluctuations of the metric. Because éf the necessity
to tunnel in or out of the horizon, the rate of particle creation by black
holes is relatively low and is governed by the surface gravity since this
measures the gravitational field at the horizon and hence how far the particles
have to tunnel.

Consider, for simplicity, a quantised scalar Hermitian field qb . To
calculatée the number of scalar particles created by an external potential well
one has to solve the field equation for q) with the external potential. In
order to obtain the correct initial conditions with no scalar particles present,
I shall assume that the potential.well is not present in the infinite past but
that it develops at some later time. One can therefore express the Heisenberg

operator in the form:

¢ :% {JCLO“L *:;; 0“:



where the {f%}are a complete orthonormal family of c-number solutions of the
wave equation (with the external potential) which in the infinite past contain
only positive frequencies. The operators a; and a; are position independent
and commute with each other apart from [»éiz}=(§g . In the infinite past,
when the potential well was absent, aL and a; have the interpretation of
annihilation creation operators respectively. Thus the state IO_> which
contains no scalar particles in the infinite past is defined by

a, 0_»>»=0
for all i. As the solutions {fi}' propagate forwards in time they will be
affected by the presence of the potential. Thus to an observer at infinity
at late retarded times they will appear to contain negative frequency components.
This means that for the observer the operators a; will not be the annihilation
operators and the state o_» will not appear to be empty. Let {Fp?} be
a complete orthonormal family of outgoing c-number solutions of the wave equation
which are asymptotically positive frequency near infinity at late retarded times.
The operator q) can be expressed in terms of the {bi} and some additional
solutions '{qi} which represent states which at late times are localised in
the potential well and do not extend to infinity: |

] ot -t
¢ - z (p;b; + p;by + qye; + qpe.0)
L
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The position independent operators bi and bi are respectively the annihilation
and creation operators for an observer at infinity at late retarded times. Each
solution p, can be expressed as a linear combination of solutions {’fi} and
IE.}
L i
.= o, £, +B F .
Py Z( ij’ i 1813 _1)
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Using this and comparing the two expressions for ¢) , one sees that each

. T
operator bi can be expressed as a linear combination of { ai}. and {fai :

b, = ( 5 al)
i Z o(ijaj - 3 ijaj .-
o



For the observer at late retarded times the number operator for the ith outgoing
state will be S;bi . The expectation value of this in the state 10_ > will
be ZE '{gijl 2 . Thus to compute the number of particles produced by the
potengial well one simply has to find the coefficients /? ij° In this derivation
of particle creation it is essential that the potential well was turned off at
early times because otherwise there would have been né mixing of positive and
negative frequéncies. However the creation should not be thought of as all
taking place during the time that the potential well was being turned on.
Particle creation is really a global process which cannot be localised. The
rate of particle emission by the potential well at late retarded times is
independent of exactly how the potential well was turned on.

The above discussion applies to particle production by any external potential.
To apply it to the gravitational case one simply has to replace the Minkowski
metric q ab by gab in the wave equation for Qb , which, for simplicity,

I shall take to be massless. I shall consider the field ¢> in an asymptotically
flat space-time containing a black hole which, for reasons explained above, is
assumed not to have existed for all time but to have formed from the collapse of
some.body. One can describe the initial positive frequency solutions {'fi-}

as solutions which are positive frequency along the generators of past null
infinity j~ (Penrose 1964, Hawking 1973, Hawking and Ellis 1973). The outgoing
solutions pi} are positive frequency along the generators of future null
infinity j+ and are zero on the event horizon. The solutions {.qi:} are

zero on j'f . It is not necessary to define positive frequency for them.

In order to calculate the particle production it is ﬁore convenient to use
solutions {jf“i} ‘and '{ﬁaj} with continuum normalisation rather than finite
normalisation. Consider such a solution Py Propagating backwards from j-P

(1)

(fig. 2). A part p_.," of the solution will be scattered by the curvature of

(S

the stationary black hole solution and will end up on j with the same



frequency ¢ that it had initially. This will give rise to a g (w -w")
behaviour in the coefficients o ¢5¢y . More interesting effects arise from
the other part pg) of the solution which enters the collapsing body, passes
through the centre and travels out to :j_ . Because the surfaces of constant
retarded time get all squashed up near the horizon ('fig. 2), p(aZ)) gets a very
large blue shift. It therefore propagates by geometric optics through the

collapsing body and out on to j_ . On each generator of j it will have

the asymptotic form

C exp(- L log(v - v)) for v ¢<v
ok (o] o

0 for voyv
o

where C 1is a constant, v 1is advanced time and v, is the latest advanced
time at which a particle could leave 3 , pass through the centre of the

. + . . s
collapsing body and escape to j before being trapped inside the event
horizon. Taking Fourier transforms one finds that the coefficients o(ww' and

. /
6&)_60’ have the asymptotic form for large c¢oO

G) -1l
Nww’ = D (CO’) * F

ey R
ﬁcoco’ = -LDC¢-®) K

C
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There is a logarithmetic singularity in these expressions at & = 0. Since P&)

is zero for large advanced times v, 1its Fourier transform will be analytic in

@
the upper half ' plane. This means that to get the correct ratio of %o
to 5(2) / one has to continue N(Z) , anticlockwise round the
(73143 17510))
/ .
singularity and then replace & by -0’ . Thus for large a_)/

, N(GQ.))CJ’ l = exp <‘lT'a_) KJ)I@C(;Z))Q)I l .

The number of particles created and emitted to infinity in the frequency

range & to W=+dw is

dcoj
O

@Ca(,_)’ OLG.), .
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- By the asymptotic expression above this is infinite. To see that this infinite

 total number of particles emitted corresponds to a steady emission at the

thermal rate consider a finite normalisation outgoing wave packet mode

J*QO
P odw
o) (PGJ w
wh ere
@ —_
o @ (#9)
The number of particles that will be emitted in this wave packet mode will be
/
fjkpw,@ww’¢wdw . |
The fraction r of the wave packet that enters the collapsing body will be
2 ) 2 @
Hw,l xeer | -
w _ [eVen

2
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It follows from this that if the wave packet is sharply peaked around a frequency

of » the number of particles emitted in the wave packet mode will be

- =1
T (exp(amaok )~ 1) .

For a wave packet at late. retarded time, the fraction [ that enters the
collapsing body is almost the same as the fraction that would have creossed the
past event horizon of the analyticaily extended final stationary black hoie
solution. This in turn ig equal to the fraction of the wave packet that would
have been absorbed by the black hole had the wave packet come from f}ﬂ .

This is exactly the relation‘between emission and absorption crosslsections for

kK
a body of temperature 21T . Similar results hold for other fields of

integer spin.and with rest mass. For Permion fields the results are again

similar except that the thermal factor is

— -1 -
(exp(2TT@Wk ) +_1)1



The temperature of a black hole is of the order of 1026M-—1 °k where

M is the mass in grams. The thermal emission means that black holes will

radiate all their rest mass in time of the order of 10_28M3

33

secs, For black
holes formed by collapsing stars M~ 10" grams so the température is very
low and the life time is much longer than the age of the universe. However
there might be much smaller black holes which were formed by fluctuations in
thé early universe (Hawking 1971). Any such black hole of less than 1O15 grams
would have'evaporated by now. Even if there aren't any small black holes, the
fact that black holes are not completely black is conceptually very important

because it means that they are not completely cut off from the rest of the

universe.
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