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Summary

We study quantum gravitational effects on black hole radiation, using loop quantum gravity.
Bekenstein and Mukhanov have considered the modifications caused by quantum gravity
on Hawking’s thermal black-hole radiation. Using a simple ansatz for the eigenstates the
area, they have obtained the intriguing result that quantum gravity affects the radiation
considerably, yielding a non-thermal spectrum. We replace the simple ansatz with the
eigenstates of the are computed using loop quantum gravity. We derive the emission spectra,
using a classical result in number theory by Hardy and Ramanujan. We do not recover
the Bekenstein-Mukhanov spectrum, but a Hawking’s thermal spectrum. The Bekenstein-
Mukhanov result is therefore likely to be an artefact of the naive ansatz. The result is an

example of concrete application of nonperturbative quantum gravity.
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Abstract

We study quantum gravitational effects on black hole radiation, using loop
quantum gravity. Bekenstein and Mukhanov have recently considered the
modifications caused by quantum gravity on Hawking’s thermal black-hole
radiation. Using a simple ansatz for the eigenstates the area, they have ob-
tained the intriguing result that the quantum properties of geometry affect
the radiation considerably, yielding a definitely non-thermal spectrum. Here,
we replace the simple ansatz employed by Bekenstein and Mukhanov with

the actual eigenstates of the area, computed using the loop representation of
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quantum gravity. We derive the emission spectra, using a classical result in
number theory by Ramanujan and Hardy. Disappointingly, we do not recover
the Bekenstein-Mukhanov spectrum, but —effectively- a Hawking’s thermal
spectrum. The Bekenstein-Mukhanov result is therefore likely to be an arte-
fact of the naive ansatz, rather than a robust result. Finally, we comment
on the relevance of the above derivation for the understanding of black hole
entropy. The result is an example of concrete (although somewhat disappoint-

ing) application of nonperturbative quantum gravity.

Quantum gravity research has traditionally suffered for a great scarcity of physical appli-
cations where theories and ideas could be tested, at least in principle [1]. One of the few
areas in which ideas on quantum gravity may be tested is black hole physics [2]. The loop
approach to quantum gravity [3] is now sufficiently developed that we may begin to probe it
within “physical” applications. It is thus natural to investigate what loop quantum gravity
asserts about black hole physics.

Recently, Bekenstein and Mukhanov [4] have suggested that the thermal nature of Hawk-
ing’s radiation may be affected by quantum properties of gravity (For a review of earlier
suggestions in this direction, see [5]). As it is well known, Hawking derived the black hole
thermal emission spectrum from quantum field theory in curved spacetime, therefore within
the approximation in which the quantum properties of gravity are neglected. Attempts have
been made to relate Hawking’s temperature with gravitational dynamics, but the problem of
how quantum gravity affects black hole emission can be convincingly addressed only within
a full theory of the quantum gravitational field. Bekenstein and Mukhanov observe that in
most approaches to quantum gravity the area can take only quantized values [6]. Since the
area of the black hole surface is connected to the black hole mass, black hole mass is likely
to be quantized as well. The mass of the black hole decreases when radiation is emitted.

Therefore emission happens when the black hole makes a quantum leap from one quantized



value of the mass (energy) to a lower quantized value, very much as atoms do. A conse-
quence of this picture is that radiation is emitted at quantized frequencies, corresponding to
the differences between energy levels. Thus, quantum gravity implies a discretized emission
spectrum for the black hole radiation.

By itself, this result is not physically in contradiction with Hawkings prediction of a
continuous thermal spectrum. To understand this, consider the black body radiation of
a gas in a cavity, at high temperature. This radiation has a thermal Planckian emission
spectrum, essentially continuous. However, radiation is emitted by elementary quantum
emission processes yielding a discrete spectrum. The solution of the apparent contradiction
is that the spectral lines are so dense in the range of frequencies of interest, that they give
rise —effectivelv— to a continuous spectrum. Does the same happen for a black hole?

In order to answer this question, we need to know the energy spectrum of the black
hole, which is to say, the spectrum of the Area. Bekenstein and Mukhanov pick up a simple
ansatz: they assume that the Area is quantized in multiple integers of an elementary area

Ap. Namely, that the area can take the values
A, =nAy, (1)
where n is a positive integer, and A, is an elementary area of the order of the Planck Area
Ay = ahG, (2)

where « is a number of the order of unity (G is Newton’s constant and ¢ = 1). Ansatz (1)
is reasonable; it agrees, for instance, with the partial results on eigenvalues of the area in
the loop representation given in [7], and with the idea of a quantum picture of a geometry

made by elementary “quanta of area”. Since the black hole mass is related to the area by
A =167G*M?, (3)

it follows from this relation and the ansatz (1) that the energy spectrum of the black hole

is given by



nah
Mo = V 167G (4)

Consider an emission process in which the emitted energy is much smaller than the mass M

of the black hole. From (4), the spacing between the energy levels is

ah

AM = oo G

(5)

From the quantum mechanical relation £ = hw we conclude that energy is emitted in
frequencies that are integer multiple of the fundamental emission frequency

>
32rGM

w =

(6)

This is the fundamental emission frequency of Bekenstein and Mukhanov [4] (they assume
« = 41n2). Bekenstein and Mukhanov proceed in [4] by showing that the emission amplitude
remains the same as the one in Hawking’s thermal spectrum, so that the full emission
spectrum is given by spectral lines at frequencies multiple of @, whose envelope is Hawking’s
thermal spectrum.

As emphasized by Smolin in [5], however, the Bekenstein-Mukhanov spectrum is drasti-
cally different than the Hawking spectrum. Indeed, Hawking temperature is

h

Tw = snat

(7)

(k is Botzmann constant); therefore the maximum of the Planckian emission spectrum of

Hawking’s thermal radiation is at

2.82kTy 282  2.82-4
I 8 TGM «

Wy ~ O R @. (8)

That is: the fundamental emission frequency @ is of the same order as the maximum of the
Planck distribution of the emitted radiation. It follows that there are only a few spectral lines
in the regions where emission is appreciable. Therefore the Bekenstein-Mukhanov spectrum
is drastically different than the Hawking spectrum: the two have the same envelope, but
while Hawking spectrum is continuous, the Bekenstein-Mukhanov spectrum is formed by

just a few lines in the interval of frequencies where emission is appreciable.
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This result is of great interest because, in spite of its weakness, black hole radiation is
still much closer to the possibility of (indirect) investigation than any quantum gravitational
effect of which we can think. Thus, a clear quantum gravitational signature on the Hawking
spectrum is a very interesting effect. Is this Bekenstein-Mukhanov effect credible?

One of the most definite results of loop quantum gravity is a calculation of the spectrum
of the area from first principles [8]. Thus, following a suggestion in [5], we may use loop
quantum gravity to check the Bekenstein-Mukhanov result, by replacing the naive ansatz
(1) with the precise spectrum computed in this approach to quantum gravity.

Consider a surface ¥ —in the present case, the event horizon of the black hole—. According
to loop quantum gravity, the area of ¥ can take only a set of quantized values. These
quantized values are labelled by unordered n-tuplets of positive integers p' = (py, ..., pp) of

arbitrary length n. The spectrum is then given by

Ay =16mhG Y 2 (& + 1), (9)

i=1,n 2 2
For a full derivation of this spectrum, see [8]. The spectrum (9) is not complete. There is an
additional sector corresponding to a class of “degenerate” states, whose physical interpre-
tation is not obvious to us. These degenerate states play no role in the present discussion,
however.

If we disregard for a moment the term +1 under the square root in (9), we obtain
immediately the ansatz (1), and thus the Bekenstein-Mukhanov result. However, the +1 is
there. Let us study the consequences of its presence. First, let us estimate the number of
Area eigenvalues between the value A >>> [y and the value A + dA of the Area, where we
take dA much smaller than A but still much larger than ly. Since the +1 in (9) affects in a

considerable way only the tems with low p;, we can neglect it for a rough estimate. Thus,

we must estimate the number of unordered strings of integers p'= (p1, ..., p) such that

A
P = o 1.
izzmp e > (10)

This is a well known problem in number theory. It is called the partition problem. It is the

problem of computing the number NV of ways in which an integer I can be written as a sum



of other integers. The solution for large I is a classic result by Ramanujan and Hardy [11].

According to Ramanujan and Hardy, IV grows as the exponent of the square root of I.
N(I) ~ e’ (11)

Applying this result in our case we have that the number of eigenvalues between A and

A+ dAis

p(A) ~ eVwha, (12)

Now, because of the presence of the +1 term, eigenvalues will overlap only accidentally:
generically all eigenvalues will be distinct. Therefore, the average spacing between eigenval-
ues decreases exponentially with the inverse of the square of the area. This result is to be
contrasted with the fact that this spacing is constant and of the order of the Planck area in
the case of the naive ansatz (1). This conclusion is devastating for the Bekenstein-Mukhanov

argument. Indeed, the density of the energy levels becomes
p(M) = ¢V25RM, (13)

and therefore the spacing of the energy levels decreases exponentially with M. It follows
that for a macroscopical black hole the spacing between energy levels is infinitesimal, and
thus the spectral lines are virtually dense in frequency. We effectively recover in this way
Hawking’s thermal spectrum (except, of course, in the case of a Planck scale black hole).
The conclusion is that the Bekenstein-Mukhanov effect disappears if we replace the naive
ansatz (1) with the spectrum (9) computed from loop quantum gravity. More generally, we
have shown that the Bekenstein-Mukhanov effect is strongly dependent on the peculiar form
of the naive ansatz (1), and it is not robust. In a sense, this is a pity, because we loose a
possible window on quantum geometry.

We close with a comment on black hole entropy. From the point of view of an observer
at infinity, a (non-charged and non-rotating) macroscopic black hole appears as an object

completely characterized by its energy M. If we study the thermodynamics of a system
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that contains the black hole, we have to include the microscopic black hole states in the
count of the density of states. In other words, the black hole thermodynamical properties
are characterized by the microcanonical partition function z(M) which gives the number of

states between the energies M and M + dM. Notice that
2(M) = v(M)p(M), (14)

where p(M) is the density of eigenvalues of M given in (13), and v(M) is the factor deter-
mined by the fact that M eigenstates may be degenerate. If we assume for a moment that the
area energy levels are non degenerate, then we have immediately the full thermodynamics
of the black hole from (13). Unfortunately, it is easy to see that this yields a dependence of
the entropy from the area of the form S(A) ~ /A, which is likely to be incorrect. Therefore
considering the area eigenstates as degenerate is incorrect. It is not difficult to understand
why. The black hole surface is a sphere in which we may distinguish points from cach other,
in terms of the neighboring geometry. Thus, a microscopical analyses could in principle
distinguish whether one patch of the surface has more area than another one. Consequently,
we must consider two quantum states of the black hole as distinguishable (from the outside)
if the two are related simply by a relabelling of the microscopical area elements. Two such
states are characterized by different orderings of the same n-tuplet 5 = (p1,...pn). Thus,
in studying the thermodynamical properties of a black hole we must assign a multiplicity
n! to a state characterized by the n-tuplet p = (pi,...pn). In a remarkable recent paper
[10], Krasnov has explicitly computed this density of state and the related entropy, using
an elegant technique from statistical mechanics and obtaining a linear dependence of the
entropy S from the area, as in the Bekenstein-Hawking formula. In [10], Krasnov motivates
this computation in terms of the Bekenstein entropy-bound conjecture and the holographic
hypothesis. We believe that such arguments are in fact superfluous, and that the Krasnov
computation can be reinterpreted as a straightforward computation of the density of the
microstates of the black hole distinguishable from the outside. Then, loop quantum gravity

provides a direct root for deriving the Bekenstein-Hawking formula S ~ A from nonpertur-
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bative quantum gravity. These considerations will be further developed elsewhere.
Summarizing, we have derived two consequences from loop quantum gravity. We have
shown that the discretization of the spectrum derived by Bekenstein and Mukhanov disap-
pears if we use quantitative result from the theory, and we have indicated that the density of
states of a quantum black hole can be computed, yielding the correct Bekenstein-Hawking
entropy. Our results indicate that loop quantum gravity is sufficiently mature to begin

addressing concrete physical problems.
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