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Abstract

The gravitational dynamics of the coarse-grained spacetime geometry should
emerge from extremizing the number of microscopic configurations, Ω, of the pre-
geometric variables corresponding to a given geometry. This Ω will be the product
over all events P of the density, ρ(P), of microscopic configurations associated with
each event P . I show how ρ can be computed, in terms of the Van-Vleck deter-
minant, and thus obtain directly the gravitational effective action LE at meso-
scopic scales. The leading term of this, non-perturbavive, effective action gives the
Einstein-Hilbert action, thereby providing its microscopic derivation. The higher
order corrections are finite without any need for regularisation and I demonstrate
how they can be computed in a systematic manner.

The nature of spacetime dynamics allows us to define three characteristic regimes:
macroscopic, mesoscopic and microscopic. A complete model for the quantum space-
time is needed to probe microscopic length scales λ . LP (where L2

P = G~/c3 is the
Planck length) while the classical Einstein equation is adequate for probing macroscopic

length scales λ ≫ LP . At the intermediate mesoscopic scales which are large — but not
significantly large — compared to LP , one would expect the spacetime to be still de-
scribed in terms of an effective geometry, determined by the dynamical equations which
incorporate the quantum gravity (QG) corrections. I will describe how we can study
this regime in terms of a suitable extremum principle which, at the leading order, will
reduce to that based on the Hilbert action. This can be done by combining classical
geometric considerations with coarse-graining over sub-Planckian degrees of freedom.

An analogy between spacetime dynamics and fluid dynamics will be helpful to set the
stage. In the study of a fluid made of discrete atoms (“microscopic degrees of freedom”)
one can again delineate three levels of description. The first one is microscopic in which
one would describe the system in a completely quantum mechanical language by, say,
writing the Schrodinger equation for all the atoms of the fluid. At the other extreme,
we have a macroscopic description, in terms of continuity and Navier-Stokes equations,
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which totally ignores the granularity of the fluid and treats it as a continuum. In this
regime we would, for example, describe the velocity of the fluid at a given event xi

by a single-valued vector function v(t,x). These two descriptions are analogous to the
microscopic and macroscopic descriptions of the spacetime I mentioned earlier. What
we are looking for is a mesoscopic scale description interpolating between these two.
The kinetic theory of fluids, in terms of a distribution function f(xi, pi), provides such
an interpolation between these two extremes. The distribution function recognizes the
discreteness of the fluids — with dN = f(xi, pi) dΓ counting the number of atoms in a
phase volume dΓ ≡ d3x d3p — and, at the same time, allows a continuum description at
scales sufficiently larger than the mean free path. In this mesoscopic scale description
we recognize the existence of velocity dispersion at any given event xi due to discrete
atoms with different momenta pi co-existing at a given event. What we are interested in
is a similar description, at mesoscopic scales, for the spacetime fluid with Planck length
playing the role of the mean free path.

To obtain such a description, we can proceed as follows: Consider a spacetime ge-
ometry G, described a metric tensor ḡab(x̄) in an arbitrary coordinate chart x̄i. There
will a large number, Ω, of microscopic configurations of (as yet unknown) pre-geometric
variables which will be consistent with a given emergent geometry G. (This is similar to
the existence of several microscopic configurations of the atoms of a fluid, consistent with
some macroscopic parameters like pressure, density etc). Let f(P , ξA) be the number
of possible configurations of the microscopic degrees of freedom of spacetime, associated
with an event P , in a given geometry G. As indicated, this function f(P , ξA) could also
depend on the relics of some sub-Planckian degrees of freedom, symbolically denoted
by ξA. (These are analogous to the momenta of individual atoms in kinetic theory of a
fluid.) The total number of microscopic configurations in a given region of spacetime is
then given by

Ω ≡
∏

P,ξA

f(P , ξA) = exp[
∑

P,ξA

ln f(P , ξA)] ⇒ exp

[

−
∫

d4x̄
√
ḡ LE

]

≡ exp−AE (1)

where

LE = −L−4
∑

ξA

ln f(P , ξA) ≡ −L−4 ln ρ(P); ρ(P) ≡
∏

ξA

f(P , ξA) (2)

Here ρ(P) denotes the number of microscopic configurations associated with a given
event P once the product over internal variables ξA is taken. In the third step in Eq. (1),
we have taken the continuum limit and introduced the length-scale L = O(1)LP ≡ µLP ,
of the order of Planck length, to ensure proper dimensions.1 The AE can be thought
of as an effective (Euclidean) action. The QG corrected field equations at mesoscopic
scales can then be obtained by extremising the microscopic configurations Ω = e−AE

with LE playing the role of a gravitational effective Lagrangian.
Our next task is to determine f(P , ξA) and ρ. As we will soon see, the variables

ξA arise very naturally — and automatically — in this approach. So, let me ignore

1So, the discrete sum over events P goes over to integration with dimensionless proper volume
measure

√
ḡd4x/L4 in the continuum limit.
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these variables ξA just for the moment so that f is the same as ρ. Then I would expect
f = ρ ∝ √

ḡ so that ρ(x̄)d4x̄ ∝ √
ḡ(x̄)d4x̄ will scale as the proper volume of a region.

The QG corrected field equations of the gravitational sector has to then come from the
effective Lagrangian LE = −L−4 ln

√
ḡ when we vary the metric. At first sight, this

seems impossible because of three issues: (i) We would expect the extremum principle
to be based on the Ricci scalar R at the appropriate limit rather than on ln

√
ḡ. (ii)

One would like to interpret
√
ḡ in terms of a suitable scalar quantity, after eliminating

the gauge freedom in the metric tensor at any event P . (iii) One cannot expect to get
a finite number of microscopic degrees of freedom purely classically, without invoking
some QG considerations. I will now show how all these issues can be tackled with the
proper interpretation of the

√
ḡ factor.

The metric tensor ḡab(x̄) (and its determinant), at any given event P ′, contain come
amount of gauge redundancy in any generic coordinate system. So our first task is
to eliminate this freedom at an event by choosing an appropriate coordinate system.
Such a coordinate system, usually called Riemann normal coordinates, is well known
in literature (see e.g., [1, 2]). If one introduce the Riemann normal coordinates (RNC),
centered around an event P ′ in the spacetime, the new metric gik(P ,P ′) at any another
event P will depend on both P and P ′. That is, in the RN coordinates, we get a
family of metrics gik(x, x

′) at x, parameterized by the coordinates of another event x′.
The construction of RNC ensures that metric reduces to the Cartesian form, and the
Christoffel symbols vanish, at x′.

This choice also allows a co-ordinate invariant description. It is well-known that [3],
the

√
g(x, x′) in RNC is precisely equal to the reciprocal of the Van-Vleck2 determinant,

∆−1(x, x′), obtained from the second derivatives of the geodesic interval, σ2(x, x′). That
is, ∆−1(x, x′) is a (bi)scalar which reduces to

√
g in RNC; so by using ∆−1(x, x′) in

arbitrary coordinates, we also obtain a covariant description.3 The metric determinant√
g = ∆−1 in RNC can now be expressed in terms of the geometrical variables built from

the curvature tensorRijkl and its derivatives. It will also depend on the geodesic distance
σ2(x, x′) and the unit-norm vectors ni(x, x

′) ≡ ∂iσ with the latter two appearing (only)
through the combination qi(x, x′) ≡ σni. We can, therefore, write down the functional

∆−1(x, x′) = (
√
g)RNC = f [Rijkl(x);σn

i] = f [x; qi(x, x′)] (3)

where it is understood that the functional dependence on the curvature also includes
dependence on its derivatives.4

This expression is non-local (i.e., it depends on two events x and x′) while we are
looking for a local expression for the density of microscopic degrees of freedom associated
with an event. The simplest procedure to get a local expression will be to take the limit
x → x′; this, however, does not work because — in this limit — σ(x, x) vanishes and
all the dependence on the curvature disappears. This, of course, is to be expected.

2The Van-Vleck determinant is defined, in arbitrary coordinates, by: ∆(x, x′) =

D(x, x′)/(
√

g(x)
√

g(x′)) where D = (1/2)Det[∂a∂′

b
σ2(x, x′)]

3This trick of using ∆−1 to replace
√
g in RNC in order to obtain a covariant description is well

known in literature. See, e.g., [4, 5].
4One could have introduced a proportionality constant λ between (

√
g)RNC and f and written

f = λ
√
g. Observations show that λ = 1 to a very high order of accuracy! I will discuss this later. The

choice λ = 1 is equivalent to the normalization ρ = 1 in flat spacetime.
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It will be impossible to obtain a non-trivial, local, measure of microscopic degrees of
freedom without introducing some kind of ‘discreteness’ in the spacetime at Planck
scales. A point of strictly zero size cannot host degrees of freedom in spacetime, just as
it cannot host a finite number of atoms in a fluid. In a fluid we need to average over
a volume which is large compared to the mean free path; similarly, in the spacetime
we need to coarse-grain over Planck-size regions. This is most easily done by averaging
(coarse-graining) ln∆(xi, σni) over the sub-Planckian 4-sphere S4 by integrating the
displacement qi ≡ σni over a 4-sphere of Planck scale radius L0, say. This procedure is
conceptually equivalent to replacing σ by L (which is related to L0 by an unimportant
numerical factor) and averaging over all ni over a 3-sphere in the expression ln∆(xi, σni).
We can now identify the density of microscopic degrees of freedom as f [Rijkl(x);σn

i] ≡
∆−1[Rijkl(x); q

i], with qi playing the role of internal variables ξA in Eq. (1). That
is, a natural set of internal degrees of freedom ξA arises in the form of Planck scale
displacement vector field qi which are summed over. We thus get the final expression
for the Euclidean effective Lagrangian:

LE = −L−4 ln ρ[Rijkl(x)] = L−4

[
∫

S4

d4q ln∆[Rijkl(x); q
i]

]

(4)

This is a well-defined, non-perturbative, expression for the gravitational effective action

for a coarse-grained spacetime.

The expression for effective Lagrangian Eq. (4) can be evaluated non-pertubatively
if we know the exact dependence of ln∆ on σ2. Since we do not know this, the effective
Lagrangian has to be computed as a series in L2

P . This is easily done using the known
[6, 7] series expansions, for, say, g in RNC (with qi ≡ σni)

g = 1−Aij(q
iqj)−Aijk(q

iqjqk)−Aijkl(q
iqjqkql) +O(σ5) (5)

whereAij = (1/3)Rij , Aijk = (1/6)∇kRij andAijkl = (1/180)[9∇l∇kRij+2Rp
ijqR

q
pkl −

10RijRkl]. Computing (− ln
√
g), correct to O(σ6) and integrating over all qi inside a

Planck scale 4-sphere, we get the effective Lagrangian in Eq. (4) to be:

LE = L−4

[
∫

S4

d4q ln∆[Rijkl(x); q
i]

]

=
π2

12L2

[

R+ L2Q+O(L4)
]

(6)

where L = µLP and

Q ≡ 1

2

[

1

20
�R+

1

90
RabR

ab +
1

10
∇a∇bR

ab +
1

60
RabcdR

abcd

]

(7)

The coefficient of R has to be fixed by comparing with the Newtonian limit, in terms
of GN by setting the coefficient to (16πL2

P )
−1; this leads to µ2 = 4π3/3. So our final

result for the effective Lagrangian, correct to O(L4

P ), is:

LE =
1

16πL2

P

(

R +
4π3

3
L2

PQ+O(L4

P )

)

(8)

These expressions allow us to compute quantum corrections to Einstein’s equations
in a systematic manner. Note that the corrections are finite and requires no additional
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regularization. The conceptual simplicity of the approach which has led to such a tangible

result is note worthy.

Let me now comment on several aspects of this result.
The effective Lagrangian in Eq. (8) has no cosmological constant term because we

took f =
√
g. If we had taken, instead, f = λ

√
g with a proportionality constant λ,

then the ln f in Eq. (4) would have contributed an extra lnλ terms appearing as a
dimensionless cosmological constant ΛL2 ≃ lnλ. This tells you that λ = 1+O(10−123).
That is, the natural choice λ = 1 indeed predicts zero cosmological constant. It also
suggests that the observed cosmological constant in the universe is a non-perturbative
relic [8] from QG which changes λ by a tiny amount from unity.

The RNC is constructed so that it is locally inertial at a given event eliminating gauge
degrees of the metric at that event. A synchronous reference frame with line element
ds2 = dσ2 + σ2γαβ(σ, x

α)dxαdxβ , on the other hand, imposes the gauge conditions
g00 = 1, g0α = 0 in a local region and serves the same purpose. It uses the geodesic
distance σ as a “radial” coordinate. In this frame ∆−1 = ρ = (γ/γflat)

1/2, where
√
γ is

the unit area element of σ = constant surfaces.5 The density of microscopic degrees of
freedom can now be thought of as being proportional to the dimensionless area measure√
γ. The spatial surfaces σ= constant maps to equi-geodesic surfaces σ(x, x′) = constant

in an arbitrary frame. It is also well known [3] that the density of geodesics is given by
the reciprocal of the Van-Vleck determinant ∆−1(x, x′). Our results suggest identifying
the microscopic degrees of freedom of spacetime at the event P as the the density of
geodesics, with suitable coarse-graining as we approach the Planck scales.

Our approach has opened up several further avenues of exploration. We now have
an explicit expression for the density of microscopic degrees of freedom:

f [xi, pi] = ∆−1[Rijkl(x), Ln
i] ; nini = 1 (9)

where qi = ∆xi ≡ Lni are Planck scale displacements in random directions. (The
relation f = ∆−1 was first introduced in [9] and was explored further in the context of
area of equi-geodesic surfaces in several previous works.) Here I have ignored all the
dynamics contained in ni and have merely summed over it. The next step would be
to investigate whether one can obtain an evolution equation for f(xi, ni) as in the case
of fluid kinetics. The occurrence of the factor ln∆ = lnDet∆ab′ , where ∆ab′ is the
Van Vleck matrix, suggests some possibilities. This factor will arise, for example, in a
path integral over a vector field va of the amplitude exp[−va∆ab′v

b′ ]. All these signals
the deep role played by the geodesic distance σ2(x, x′), Van Vleck matrix ∆ab′ and its
determinant ∆ in the microscopic structure of spacetime.

My research is partially supported by the J.C.Bose Fellowship of Department of
Science and Technology, Government of India.

5The ∆ satisfies the equation ∂σ(ln∆) = 3σ−1−K in this frame, where K = ∂σ ln
√
h = ∂σ ln

√

σ3γ
is the extrinsic curvature of the equi-geodesic surfaces. This integrates to give ρ = ∆−1 ∝ √

γ =
√

γ/γflat with proper normalization.
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