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Abstract

1. Introduction

arbitrary

observation space

shear-free null geodesic congruences

asymptotically �at space-time, asymptotically shear-free

We discuss the existence, arising by analogy to that in algebraically

special space-times, of a unique asymptotically shear-free congruence in

any asymptotically �at space-time. Associated with it is a unique complex

analytic curve in H-space. The surprising potential physical signi�cance of

this curve is discussed.

In this work we describe new results concerning asymptotically �at space-times.

From the asymptotic Weyl tensor obtained from an gravitating source,

we can de�ne and construct, a �center of mass� and �spin-angular momentum�

and their associated equations of motion by using a self-contained novel method.

The basic result is that all the above information is contained in a complex

world-line in a complex with surprising physical meaning.

The starting point for this work was the observation of the important role

that (ngc) played in the history of general

relativity and how that role could be taken in the far more general situation of

by ngc�s.

One of the major theoretical advances in General Relativity of the last half
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explicit ex-

pressions

shear free

can

not asymp-

totically shear-free do exist

any

century was the development of the theory of asymptotically �at solutions of

the Einstein/Einstein-Maxwell equations. This culminated in the proof[1] that

from the �eld equations, gravitational radiation could be predicted; gravitational

waves carry away mass and momentum. Bondi�s epic work included

for the total energy/momentum, given as terms in the asymptotic Weyl

tensor. Near this time[2] the existence of the four principal null vectors[3, 4] (pn-

v�s) of the Weyl tensor was discovered with the associated existence of the alge-

braically special solutions (ASS) de�ned by degeneracy in the four pnv�s. From

it came the Goldberg-Sachs theorem[5]: the degenerate pnv being the tangent

vector �eld to a ngc that is . The physically important Schwarzschild,

Reissner-Nordstrom, Kerr and charged Kerr, the Robinson-Trautman metrics[6],

etc., lie in this class.

Recently[8, 9, 10, 11] we returned to the study of asymptotically �at Einstein/Einstein-

Maxwell �elds and discovered a hidden structure. Though shear-free ngc�s

be found in arbitrary space-times, their idea can be generalized to

ngc�s. which in such space-times. The main devel-

opment was the realization that for asymptotically �at Einstein space-time

(or Einstein-Maxwell with non-vanishing total electric charge) there existed a

class of regular asymptotically shear-free (generally twisting) ngc�s where indi-
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by the arbitrary choice of a complex

analytic world-line

forcing certain Weyl ten-

sor terms to vanish - the counterpart of vanishing type II Weyl-tensors terms

a

mass-loss term

vidual members of the class are determined

in the complex four-dimensional H-space. Among these con-

gruences, one can be singled out canonically; two for the Einstein-Maxwell case.

The unique choice is made, in the vacuum case, by

.

For the Einstein-Maxwell �elds, two uniquely de�ned world-lines are found: one

from the asymptotic Maxwell tensor, the other again by mimicking type II Weyl-

tensors. We con�ned ourselves to the case where the two world-lines coincided.

Our formal results appear to have a surprising physical signi�cance. The

Bondi 4-momentum is determined directly in terms of the world-line while the

time evolution of the 4-momentum then determines the equations of motion.

With no assumed models, simply from the Einstein-Maxwell equations, the real

part of the world-line yields the classical equations of motion for a �particle�

with structure while the imaginary part becomes the spin per unit mass. These

equations of motion include the radiation reaction term and, in addition,

that appears to suppress the run-away behavior.
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As the details[8, 9, 10, 11] of this work are complicated, we simply outline the

basic ideas.

Begin with an arbitrary asymptotically �at Einstein or Einstein-Maxwell

space-time. In a neighborhood of future null in�nity, we introduce a Bondi

coordinate system, ( ), with a Bondi tetrad, ( ). At , is tan-

gent to the Bondi null surfaces, is tangent to the null generators of while

( ) are the complex tangent vectors to the Bondi slices, = const The as-

ymptotic shear of the Bondi congruence, is an arbitrary complex func-

tion on that is assumed to be analytic in its three arguments, extendable into

the complex. The important physical quantities, the Bondi mass/momentum,

are obtained as 2-surface integrals of components of the Weyl tensor with, in

the vacuum case, their evolution in time determined from the shear:

(2.1)

(2.2)

where ( ) is the Bondi mass aspect. A generalization for the Einstein-

Maxwell case exists.
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Solutions to Eq.(2.4) that are regular on are given by the

following procedure: First we note the general regular solution of the �good cut�

equation,

ð

We consider a in the neighborhood of whose tangent vector is

given by

(2.3)

is the complex stereographic coordinate on the sphere of past null direc-

tions of the past light-cone for any point on and is an

on . If is chosen to satisfy the partial differential

equation[12]

ð , (2.4)

the tangent vector �eld Eq.(2.3), determines an

ngc. (When solutions to (2.4) lead to twistor-space and the

Kerr theorem.) A surprising aspect of (2.4) lies in the freedom in the choice of

solutions:

(2.5)
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can be written as

where the four complex integration parameters de�ne H-space. From an

in H-space,

the solution to (2.4) can be expressed parametrically by

ð

with

(2.6)

(2.7)

In other words, the regular solutions of (2.4) are given uniquely, modulo the

arbitrary choice of a complex curve in H-space.

In order to chose this line uniquely we note that for (asymptotically �at)
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algebraically special, vacuum metrics, there is a canonical choice of this world-

line that produces not only an shear-free ngc but a shear-free

ngc throughout the space-time. With this canonical curve, one has a canonical

and Algebraic specialness de�nes the NP-tetrad form[13] of the

Weyl tensor:

(2.8)

For general asymptotic solutions, this property can not be duplicated. Nev-

ertheless, the freedom in the choice of the curve can be eliminated by a much

weaker condition. Analogous to Eq.(2.8), we force just the harmonic

component of the leading asymptotic term in to vanish:

always vanishes)

This requirement, which can always be implemented, leads to equations of mo-

tion for the determination of the curve.
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3. Interpretations

in this observation space

We stress that the details are extremely complicated and that many approx-

imations are needed. Also via Eq.(2.7), the parameter in was changed

to entailing further approximations. In a canonically determined coordinate

system, the curve description was decomposed into its real and imaginary parts,

From a series of arguments given below, the following physical meaning to the

curve emerged:

The parameter space, H-space, should not to be treated as real in any sense

- instead it should be viewed as an observation space; a screen space that cap-

tures certain images of the physical space. In the physical space-time there is

a complicated physical system, a gravitating, charged, mass distribution, that

creates curvature and an electromagnetic �eld that can be �observed�only from

its asymptotic behavior; we can not �see� individual masses, charges, spins, etc.,

but instead only the large-scale behavior. We interpret the curve as an intrin-

sic complex center-of-mass and center-of-charge world-line (with equations of

motion) for the entire system .

Arguments[10, 11]:
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,

1. By including Maxwell �elds, we obtain (as an approximation) the rela-

tionship between the Bondi three-momentum/mass and the curve velocity and

acceleration:

(3.1)

The �rst term is trivial, the second term creates radiation reaction forces, the

third resembles the Mathisson-Papapetrou spin-velocity coupling, with

identi�ed as the spin vector.

2. If (3.1) is used in the Bondi mass/momentum loss equation, Eq.(2.2)

yields dynamic equations for :

(3.2)

Bondi momentum loss.

In classical E&M, using the Lorentz self-force, one �nds the radiation-reaction

term Here, at linear order, we obtain exactly the same term

. We also see there is arising from

the Bondi mass loss. In simple numerical examples, the run-away solutions from
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This ob-

servation must be studied in more detail.

the classical radiation reaction force were damped-out by this term.

3. In the mass loss, Eq.(2.2), electric and magnetic dipole radiation appear

with second derivatives of thus identifying and

as the electric and magnetic dipole moments. The numerical factors agree with

dipole radiation derived from Maxwell theory in Minkowski space.

4. The Kerr space-time has an associated complex space and unique com-

plex world-line with imaginary part, determining the spin angular-

momentum, For the charged Kerr metric, the complex world-

line yields the magnetic dipole moment in addition to the spin. (Maxwell

�elds[9, 14, 15] in Minkowski space have

It appears natural to identify as the imaginary center of mass and charge

and de�ne the full as the center of mass and center of charge.

This allows a (complex) uni�cation of many examples of electric and magnetic

phenomena.

5. For the charged Kerr solution, in the gyromagnetic ratio, /

the imaginary displacement drops out resulting in the Dirac value, It

follows that for all asymptotically �at Einstein-Maxwell �elds, where the two

complex H-space world-lines coincide, again
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