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Abstract

We discuss a recent proposal that the Euclidean gravity approach to quantum gravity is

correct if and only if the theory is holographic, providing several examples and general

arguments to support the conjecture. This provides a natural mechanism for the low-

energy gravitational effective field theory to access a host of deep ultraviolet properties,

like the Bekenstein-Hawking entropy of black holes, the unitarity of black hole evapora-

tion, and the lack of exact global symmetries.
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Introduction

The Euclidean gravity path integral is unreasonably powerful, producing the Bekenstein-

Hawking entropy S = A/4 of black holes [1], the Gibbons-Hawking entropy S = A/4 of

cosmological horizons [2], the Ryu-Takayanagi formula of AdS/CFT [3], the Page curve [4]

of unitary black hole evaporation [5–8], the lack of exact global symmetries in quantum

gravity [9–15], and many other beautiful results. But for nearly half a century it has been

a black box: it produces results believed to be correct – in some cases substantiated by

microscopic details of the theory [16–22] – but there is no general understanding of its validity.

The most challenging aspect of the problem is to explain how infrared data, when inputted

into the machine of the Euclidean gravity path integral, produces results about the deep

ultraviolet of the theory.

In this essay we give a streamlined presentation of a proposal from [23] that says the

Euclidean gravity path integral is only valid in the context of holographic theories. More

precisely, our conjecture is as follows: The Euclidean path integral in a gravitational effec-

tive field theory produces correct results if and only if the theory admits a holographic UV

completion, in which case the computed quantities are those of the holographic theory.

By a holographic theory we mean one where the fundamental description is a non-

gravitational theory at some asymptotic boundary [24–27]. In particular the fundamental

description is not based on a local Lagrangian living in the gravitational spacetime. We will

now provide evidence for this conjecture from various lines of thought. We will focus on the

validity of the Bekenstein-Hawking entropy, but similar comments apply to other outputs of

Euclidean gravity as well [23].

Non-holographic theories

A crucial piece of our conjecture is that the Euclidean gravity path integral is incorrect for

theories with a non-holographic UV completion.

One set of such examples is the CGHS/RST [28,29] or Jackiw-Teitelboim [30–32] model

of gravity in 1 + 1 dimensions minimally coupled to any conformal field theory with central

charge c = cL = cR. These two cases are similar, so we choose to focus on the latter, whose

action is

S =

∫
M
d2x
√
−g (Φ0R+ Φ(R+ 2)) + 2

∫
∂M

dt
√
−γ (Φ0K + Φ(K − 1)) + SCFT (ψi, g), (1)

where Φ0 is a constant, Φ is a dynamical “dilaton” field, gµν is a dynamical metric, R is its
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Ricci scalar, ψi are CFT matter fields, and γ and K are the induced metric and extrinsic

curvature at the asymptotically-AdS boundary ∂M .

Since this theory is renormalizable, canonical quantization leads to a well-defined but

non-holographic quantum theory. With two asymptotic boundaries and no matter the re-

sulting theory is equivalent to the quantum mechanics of a particle moving in an exponential

potential [33], while with a nontrivial matter CFT it can be solved by Weyl transformation to

flat space [6,7,34]. This theory has black hole solutions, but the entropy of these black holes

does not obey the Bekenstein-Hawking formula: the renormalizable bulk theory can have

an arbitrarily large number of low-energy excitations near the black hole horizon, conflicting

with the Euclidean gravity approach.

Another example is pure Einstein gravity in 2+1 dimensions with a negative cosmological

constant:

S =
1

16πG

∫
M
d3x
√
−g(R+ 2) +

1

8πG

∫
∂M

d2x
√
−γ(K − 1). (2)

This theory can be canonically quantized [35–37]. In that case the number of microstates

is again incompatible with the Bekenstein-Hawking formula since the quantization of the

moduli space at fixed genus leads to a continuous spectrum and the sum over spatial genus

is divergent [36,37].

Holographic theories

To further motivate our conjecture, we first recall that in ordinary quantum field theory on a

spatial manifold Σ the Euclidean path integral representation of a thermal partition function

is derived by inserting complete sets of states into a thermal trace

Z(β) = Tr
(
e−βH

)
, (3)

which leads to a path integral on the manifold S1 × Σ. Applying this algorithm to a renor-

malizable gravitational field theory such as Jackiw-Teitelboim gravity coupled to conformal

matter therefore only includes manifolds which are topologically of the form S1×Σ for some

Σ. As originally explained by Hawking, by time-translation symmetry the on-shell action of

any gravitational field theory on such a manifold will be proportional to β, giving a vanishing

thermal entropy

S(β) = (1− β∂β) logZ = 0 (4)

at leading order in the gravitational constant. Therefore no time-translation-preserving

saddle-point approximation to a Euclidean path integral derived from canonical quantization
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Figure 1: Two contributions to the Euclidean gravity path integral with a boundary thermal
circle of circumference β. On the left some cycle of the transverse directions contracts at the
dotted line, while on the right it is the thermal circle which contracts. The contribution on
the left is what is obtained from canonical quantization of gravitational effective field theory,
and gives no contribution to the entropy at leading order in the gravitational coupling. The
contribution on the right leads to the black hole entropy; it should be included only in
effective theories which are UV-completed into a holographic description.

of a gravitational field theory can ever lead to the Bekenstein-Hawking formula. There is

however a standard proposal for how to fix this: instead of only including topologies of the

form M = S1 × Σ, include all topologies M such that ∂M = S1 × ∂Σ, where ∂Σ is the

topology of the spatial boundary [1], even though most of these topologies are not gener-

ated by canonical quantization of the gravity variables. In particular the boundary circle

S1 is allowed to contract somewhere inside M , which invalidates Hawking’s argument that

logZ ∝ β. The Euclidean Schwarzschild geometry has such a point where the thermal circle

contracts to zero size, and evaluating its action leads directly to the Bekenstein-Hawking

formula. We illustrate geometries of both types in figure 1.

Why though are we allowed to include geometries where the circle contracts? We believe

that the reason is holography: if the true microscopic description lives at the asymptotic

boundary, then so does the true thermal circle! Therefore we should really only require a

product spacetime topology S1 × ∂Σ at the boundary, and it is thus plausible to include

geometries where the boundary thermal circle contracts in the interior of the spacetime. In

fact in AdS/CFT it is necessary to include them, as one is otherwise unable to obtain the

correct high-temperature entropy [38]. On the other hand, in any theory where we view the

gravitational field theory description as fundamental – as happened in our non-holographic

examples and we expect would happen in any asymptotic safety scenario – then results which

rely on Euclidean topologies with no canonical interpretation need not be correct (and indeed

they aren’t in our examples).

There remains the challenge of the introduction: how does our proposal explain why the
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low-energy path integral knows about deep ultraviolet data, like the microstates of a black

hole? In many contexts the holographic description provides a beautiful explanation: con-

sistency between cutting and gluing the boundary Euclidean path integral in different ways

provides what are known as “crossing” relations [39], and these relations typically introduce

relationships between infrared and ultraviolet data. The rules of the Euclidean gravity path

integral – in particular the sum over bulk saddles and Witten exchange diagrams – produces

bulk data that manifestly satisfies these relations, and thus allows the low-energy gravita-

tional path integral to access the deep ultraviolet. For example, for thermodynamically-

stable black holes in AdS/CFT there is a high-temperature/low-temperature duality in the

boundary theory which relates geometries where the thermal circle contracts to geometries

where it doesn’t [17, 19, 40, 41]. This is most familiar in the context of AdS3, where it re-

duces to modular invariance in the boundary theory [17] and implies Z(β) = Z(1/β) [42].

Since we do expect the low-energy gravitational theory to know the partition function on

spacetimes where the thermal circle doesn’t contract, this ensures a reliable calculation of

the Bekenstein-Hawking entropy within the low-energy theory. Thus by allowing topologies

where the thermal circle contracts, we manifestly restore a duality between low and high

temperature which was not apparent from the canonical point of view. In general we suspect

that any time the low-energy gravity theory seems to inexplicably know some kind of ultravi-

olet information, there is a crossing relation lurking in the fundamental boundary description

which is responsible.

Discussion

We have argued that Euclidean gravity is correct if and only if the theory under consideration

is holographic. All known non-holographic theories violate the predictions of Euclidean

gravity, while all holographic theories perfectly corroborate Euclidean gravity. Remarkably,

in many instances the holographic description also explains why the low-energy gravitational

theory accesses deep ultraviolet data. This correspondence should help elucidate situations

where Euclidean gravity techniques are used but holography is poorly understood, such as

our universe.
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