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Abstract

The experimental successes of quantum field theory do not justify using it to de-

scribe even a finite fraction of the entanglement entropy of a causal diamond with

its exterior, in the limit of large diamonds. Susskind and Uglum and Jacobson [1]

conjectured that this divergent entropy could be thought of as a renormalization of

Newton’s constant in the Bekenstein-Hawking formula, if we applied that formula to

arbitrary causal diamonds. Jacobson [34] showed that this leads to a derivation of the

null projection of Einstein’s equations as the hydrodynamic equations of the area law

for arbitrary diamonds, a derivation which has the added virtue of demonstrating that

the cosmological constant is not an energy density. Using a gauge choice [3] adapted

to causal diamond boundaries, we revisit arguments of Carlip and Solodukhin [4] [5]

that the proper theory of near horizon states is a (cut-off) 1 + 1 dimensional conformal

field theory, with central charge proportional to the transverse area. This leads [6] to

a universal formula for fluctuations of the modular Hamiltonian of a diamond, which

we argue is compatible with the explanation [33] [8] [30] of the temperature of de

Sitter space in terms of an identification between localized energy and the number of

constrained q-bits of the holographic degrees of freedom.
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1 Causal Diamonds, Field Theory and Experiment

The justly advertised agreement between QFT and experiment is all based on experimental
apparatus traveling on time-like trajectories that are close to the geodesic in a causal diamond
in Lorentzian space-time. A causal diamond is the set of points traced out by all time-
like trajectories between a given pair of time-like separated points, the geodesic being the
trajectory of maximal proper time. The boundary of the diamond is a null surface and the
maximal area d− 2 surface on the boundary is the diamond’s holoscreen.

In a remarkable paper [9], the authors showed that the experimental success of QFT

was unaffected if one restricted the Hilbert space to a space of dimension eS
d−1
d

BH of states
localized around the trajectory on which the experimental apparatus resides. SBH is the
Bekenstein-Hawking entropy of the holoscreen of the diamond. With the cutoff used by [9]
possible violations of QFT lay just outside the bounds of current experiments, but alternate
cutoff schemes proposed in [10] put them out of reach for the foreseeable future.

The significance of these results is that the success of QFT does not test its validity as a
description of very short wavelength states propagating on nearly null trajectories near the
boundary. We can define an ”energy” H = L0L

−1
P associated with the geodesic in the causal

diamond, which is the generator of some diffeomorphism, which leaves the diamond invariant,
and whose flow lines are time-like within the diamond and space-like outside it. We also insist
that the diamond’s geodesic be one of the flow lines, and normalize the generator so that it
measures proper time on its flow lines. For space-times conformal to maximally symmetric
spaces, these generators have been worked out in [11] [12]. In dS space, the generator H
approaches the static time translation as proper time tends to infinity. With this definition
of energy, short wavelength states propagating near the horizon have low energy, and in fact,
in QFT, there are an infinite number of states with arbitrarily low energy. If we cut off the
wavelengths at around LP , then the states typically have energy of order 1/R.

We can gain some more insight if we consider the case of Minkowski space [11] and do a
conformal transformation. Then the interior of a causal diamond maps into a Rindler wedge
and L0 maps into the Unruh [13] boost operator that leaves the wedge invariant. Our choice
of L−1P as the energy scale corresponds to insisting on Planck scale acceleration for the Unruh
detector. We’re now brought back to the old problem of calculating black hole entropy in
field theory. Of course, it comes out infinite, because of very short wavelength states that
have very low asymptotic energy. One can try to cut this off with ’t Hooft’s brick wall [14]
and pretend that one understands it, but the correct attitude is better expressed by the
proposals of [1] for dealing with the leading UV divergence of the entanglement entropy of a
diamond in quantum field theory [15] as a renormalization of GN in the BH area law. That
is to say, it was an admission that the correct physical description of near horizon states was
to be found in an as yet to be constructed theory of quantum gravity, whose basic principle
was the area law for entropy.

The brick wall proposal and attempts to understand black hole entropy in QFT lead
directly to the firewall paradox [16]. They also fail to explain a very simple feature of the
physics of black holes with negative specific heat, which leads to an equally simple resolution
of the firewall paradox. Consider a state in which an ”elementary” particle of mass m is
dropped into a black hole of mass M from a position just above the horizon, as a state in
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the Hilbert space describing the final black hole that’s formed by the infall. The final state
has an entropy excess

∆S = mLP (R/LP )(d−3)+
(d−4)
(d−3) . (1.1)

This is large as long as m� R−1 and this entropy excess has no explanation in QFT. It must
refer to a large set of q-bits that are frozen in the initial state, and are somehow responsible for
the interactions between the particle and the black hole. In [17] it was suggested that matrix
models provided an example of systems where this sort of freezing of degrees of freedom could
put off equilibration of subsystems for an extended period. In order to explain the absence
of a firewall, one must assume that the proper time along the infalling detector’s geodesic
can be mapped onto that of an orbiting detector a few Schwarzschild radii away from the
black hole. This is related to the phenomenon of ”mirages” on the black hole horizon. For
example, the orbiting detector sees the meeting of two oppositely charged particles behind
the black hole horizon as the closing of a dipole on the horizon.

The purpose of the present essay is not to recapitulate arguments about the firewall
paradox, but to point out that the field theoretic description of near horizon states has no
basis in experimental fact and can lead to theoretical errors. It has indeed led to an error in
recent descriptions of the density matrix of dS space [27]

2 The Density Matrix of de Sitter Space

In the late 1990s, after the discovery of the acceleration of the universe, a number of re-
searchers began to think seriously about the implications of an asymptotically dS universe.
This led Fischler, Susskind and Bousso [32] to propose the Covariant Entropy Bound. We
only realized much later that Ted Jacobson had shown [34] that assuming this bound was
saturated for any causal diamond led to a derivation of the equations

kµkν(Rµν −
1

2
gµνR− 8πGNTµν) = 0. (2.1)

as the hydrodynamic equations of the Covariant Entropy Principle: the conjecture that
the modular Hamiltonian of a causal diamond satisfies 〈K〉 = A

4GN
. This is a validation of

the CEP and simultaneously shows that the cosmological constant should NOT be thought
of as a local contribution to the energy density, a conclusion supported by the AdS/CFT
correspondence, by the CKN argument, and (if one believes it) by the Banks-Fischler con-
jecture [7] relating the radius of dS space to the dimension of the Hilbert space.

Given these conjectures, Fischler and I were confronted by the question of how to explain
the temperature of dS space. The Schwarzschild dS entropy formula suggested the idea that
objects localized on a static geodesic, were constrained states of the holographic degrees of
freedom, but it wasn’t until a visit to Santa Cruz by a young post-doc, Tomeu Fiol, that this
idea gelled. Fiol showed me a simple formula involving fermionic degrees of freedom organized
in a matrix, which reproduced the dS black hole entropy formula in 4 dimensions [8].

This explanation of dS temperature appears to assume that the density matrix of dS
space is maximally uncertain. At the time, Fischler and I were content to assume this,
since we were looking for a relation, the CEP, that held for arbitrary causal diamonds in
arbitrary space-times with no Killing vectors, and no thermal states. Raphael Bousso [32]
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concluded independently that the CEP referred to the dimension of the Hilbert space of a
diamond. Fischler and I did not however confront the contradiction with another strand of
our research into the quantum theory of the very earliest moments of cosmology. Fischler and
Susskind [32] had argued that the equation of state in the very early universe would violate
the CEB unless it was p = ρ. After some false starts, we realized that a mathematical model
that reproduced this equation of state was a 1 + 1 dimensional CFT living on a longitudinal
interval surrounding the apparent horizon, with a central charge that grows with the area
of that horizon. Much later, we realized that if one followed this by a period in which the
central charge did not change, one had the beginnings of a holographic model of inflation [31].
This assumes that the modular Hamiltonian of dS space is the L0 generator of a 1 + 1 CFT
with central charge proportional to the area of the horizon in Planck units, not a constant.
At the time we did not know of the prior work of Carlip [4] who had proposed just such
a description for the horizon of a general black hole. I did not learn about the even more
transparent presentation of these results by Solodukhin [5] until Kathryn Zurek pointed it
out in the course of our joint work on fluctuations in causal diamonds [6].

Let me state the results of that work in the most transparent way possible. If one looks
at the near horizon region of a generic causal diamond, whose size is large enough that
the Einstein-Hilbert action is a good approximation to gravitational dynamics, the metric
factorizes into a nearly Minkowski two dimensional metric and a transverse metric whose
fluctuations are small. This is most easily seen in a gauge invented by the Verlinde brothers [3]
to understand ’t Hooft’s [18] Commutation Relations between light ray operators. In the
Verlinde gauge, the metric is exactly the direct sum of a two dimensional Lorentzian metric
gab and a d − 2 dimensional Riemannian metric hmn. One can take the near horizon limit
in any causal diamond by scaling g ∼ L2

P , h ∼ L2, with L � LP . In terms of the rescaled
metrics, the Einstein-Hilbert action becomes

SEH = (L/LP )d−4Stop + (L/LP )d−2S⊥. (2.2)

In [3] the authors show that Stop is exactly soluble and leads to the ’t Hooft commutation
relations. The analysis of Carlip and Solodukhin shows that Sperp, which can clearly be
treated semi-classically, simplifies even further in the near horizon limit.

In the language used by Solodukhin, fluctuations of the conformal factor of the transverse
metric are encoded in a two dimensional Liouville field with central charge proportional to
the area of the background h0. All other terms in the action are ”classically irrelevant
perturbations” of this CFT in the near horizon limit. The basic hypothesis of Carlip and
Solodukhin, generalized by [6] from black holes to arbitrary causal diamonds, is that in the
quantum theory of gravity the Virasoro algebra of this classical CFT is realized by a quantum
CFT with an L0 generator that is bounded from below, so that Cardy’s theorem [19] applies.
This leads to a correct, state counting, computation of the entropy of essentially all black
holes, and to the universal formula for fluctuations of the modular Hamiltonian

〈(K − 〈K〉)2〉 = 〈K〉. (2.3)

Several recent papers [26] [28] [27] have revived the conjecture [7] [8] that the entangle-
ment spectrum of the density matrix of dS space is flat. All of them work in the infinite
entropy limit. The first, which applies only to dS3, is based on a saddle point approximation
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to a TTbar deformation of a 1 + 1 dimensional CFT. It seems plausible that the fluctuation
corrections to that model will be proportional to the expectation value of K1. The second
is the infinite temperature limit of the double scaled SYK model. It’s not clear how the
temperature is supposed to be scaled when the entropy is finite. The third proposal is the
one most directly connected to the issues raised here. These authors argue that one needs
to assume a flat entanglement spectrum if one wants to predict a thermal spectrum not just
for low probability events in which localized objects spontaneously appear near the geodesic
in the static patch of dS space, but also for states with static energy ∼ 1/R, many of which
are experimentally inaccessible to a static detector. The question posed by [9] of just what
experiment tells us about the validity of QFT in a causal diamond is directly relevant to the
assumptions made in [27]. Most of the states that contribute to the o(1) thermal probability
computed by Gibbons and Hawking [29] for field theory states of static energy ∼ 1/R are
short wavelength states propagating near the horizon. The quantum probabilities for those
states to be experimentally accessible to a detector on the geodesic, and thus within the
realm in which quantum field theory has been tested, are exponentially small. States of
energy 1/R that are described by QFT are soft graviton states with wave functions spread
over the entire diamond. These give an o(1) contribution to the o((R/LP )d−2 entropy of dS
space, and indeed the fluctuation in that entropy is o(1). The results of [30] show that one
can obtain the effective thermal spectrum for exponentially small probabilities with modular
fluctuations that are of order the entropy. Thus, the universal fluctuation formula

(∆K)2 = K, (2.4)

is compatible with the explanation of the Gibbons-Hawking temperature in terms of con-
strained q-bits, for states that are well approximated by quantum field theory. It should be
emphasized that this does not prove that the universal fluctuation formula is correct, but
only that it is compatible with the explanation of semi-classical de Sitter physics by the
assumption that static energy times de Sitter radius is a count of the number of constrained
holographic q-bits. Short wave length near horizon states are not described by QFT in
curved space-time.

3 AdS/CFT and Finite Causal Diamonds

Much recent work on locality in quantum theories of gravity has been focussed on the Ryu-
Takayanagi formulae relating entanglement entropies in the boundary CFT to areas of sur-
faces in the bulk. This has been correlated with the construction of ”local” bulk operators
from boundary CFT operators and the tensor network/error correcting code picture of AdS
space. More recent work has related these results to the formalism of algebraic quantum
field theory. In the course of that, a subtle shift in emphasis has occurred, which misses an
important point.

Early work [20] stressed that once one moved in to a finite global radial coordinate in
AdS, one was dealing with a cutoff version of the CFT. This translates into a restriction on

1Xi Dong, private communication.
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proper times. The proper time along the geodesic at r = 0 in global coordinates

ds2 = −(1 + r2/L2)dt2 +
dr2

(1 + r2/L2)
+ r2dΩ2

d−2. (3.1)

is related to the time on the boundary by an infinite rescaling. For t < πL/2, the causal
diamond for the interval [−t, t] at r = 0 has finite area. After this time it touches the
boundary. If we accept the view that finite r corresponds to finite cutoff, then the algebra
of operators describing the causal diamond for proper time less than πL/2, should be finite
dimensional as long as the number of states in each node of the tensor network defining the
cutoff is finite. Susskind and the present author have argued for more than a decade that
the number of q-bits in a tensor network node is one of the parameters controlling the semi-
classical expansion for bulk gravity. A large number of q-bits per node is a necessary but not
sufficient condition for the Einstein-Hilbert Lagrangian to be a good approximation. The
results of Perlmutter [21] show that a further requirement is that the number of operators
whose dimension remains finite in the large N limit must grow like eN

p
, where p is the power

that appears in the black hole entropy formula. Furthermore, the modular fluctuations in
a boundary causal diamond, must satisfy (∆K)2 = 〈K〉 to leading order in the boundary
UV cutoff . This is a direct consequence of Perlmutter’s calculation, for those CFTs which
are well approximated by the EH action in AdS space. It agrees with the calculation of the
modular fluctuation in the second paper of [35].

In [22] the authors exploited some remarkable numerical results of Evenbly and Vidal on
the Tensor Network Renormalization Group (TNRG) for simple low dimensional systems.
These authors formulate the construction of a tensor network for a lattice model at its critical
point by writing the tensor network wave function as sequential embeddings or quantum en-
codings of lower dimensional Hilbert spaces into the space of the full model. The parameters
of the embedding maps were determined by a numerical variational principle. Remarkably,
EV found that the eigenvalues of the low dimensional ”Hamiltonians”, the logarithms of
the embedding maps, were close to the dimensions of low dimensional operators in the CFT
describing the critical behavior. In [22] we suggested that these embedding maps be thought
of as the mapping of the quantum information in a causal diamond corresponding an in-
terval [−t, t] of proper time along the geodesic at the origin, to the diamond of the interval
[−Lp − t, t + Lp]. In my talk at the Princeton conference on the 20th anniversary of the
AdS/CFT correspondence [23], I suggested that there would be, following the work of Even-
bly and Vidal, a truncation of the operator product algebra of the CFT to low dimensional
operators, corresponding to the spectrum of the embedding operators. Once t reaches πL/2
the Hilbert space becomes infinite dimensional and a famous theorem in AQFT tells us that
the operator algebra of any finite time interval is the full algebra of the CFT.

In a recent paper, Leutheusser and Liu [24] have constructed an algebra of operators
corresponding to a finite proper time causal diamond in AdS/CFT, by first taking the GN →
0 limit. In this paper, finite proper time means ”finite in AdS radius units, in the limit that
that radius is strictly infinite in Planck units”. They argue that, in effect, this limit is being
taken to all orders in the 1/N or GNL

2−d expansion. One of the results of their paper is
that the algebra of operators corresponding to a dimensionless boundary time interval 2w,
has, for w < π/2 a non-trivial commutant, which they identify with the algebra of operators
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in the bulk causal diamond defined by the geodesic at the origin of global coordinates with
proper time interval τ ≤ (π/2− w)R.

For finite N (finite GN) the axioms of algebraic QFT show that the commutant of the
subalgebra of any boundary time interval vanishes. The latter result should not be surprising
to anyone familiar with the tensor network/error correcting code approach to the AdS/CFT
correspondence. In that framework the whole point is that a finite region of a Cauchy slice
in the bulk is a code subspace, whose entire operator algebra is reproduced in the larger
algebra of larger shells of the tensor network. The reproduction is stable against local errors:
one can omit anything less than half of the q-bits in the larger shells and still retain the
information about the code subspace.

In [22] we showed how this picture was consistent with bulk causal structure. Crucial to
that construction was the idea that any finite bulk proper time in Planck units was less than
any boundary proper time in units of the CFT cutoff. The embedding maps of the tensor
network renormalization group are viewed as part of the unitary transformation that maps
the Hilbert space H�τ into H�(τ + LP ) = H�(τ) ⊗ Hδ . Here Hδ is a Hilbert space whose
dimension is determined by the Bekenstein-Hawking area formula for a causal diamond of
proper time τ in AdS space. The relation between time on the geodesic through the origin
and time in the tensor network shell at proper time τ is

Tshell = L tan(πτ/2LP ). (3.2)

The entropy in the shell scales like T d−2shell, since the radial coordinate of the shell scales like
Tshell. Using the full symmetry group of AdS, we can choose any causal diamond of proper
time τ < πL/2 to lie in the central node of our tensor network description of the CFT.

None of the finite dimensional operator algebras corresponding to causal diamonds in th
bulk are subregion algebras or commutants of subregion algebras on the boundary. To truly
understand the bulk one must impose the UV cutoff implied by a tensor network. All of this
is consistent with what we have seen in the previous section. The Type III algebras of QFT
are not really a good approximation to anything in the theory of quantum gravity on scales
small compared to the AdS radius or in models with non-negative c.c. . QFT describes only
low entropy constrained subspaces of the local diamond algebras of the theory of quantum
gravity, whose typical states are states on the Carlip-Solodukhin (regularized) 1 + 1 CFT.
They do not resemble states in a bulk QFT on small scales because, as explained in [9] most
such states have large gravitational back reaction and are actually black holes. However
QFT does correctly predict that the expectation value of the modular Hamiltonian K of a
diamond scales like its area and that this operator has a dense set of very small eigenvalues.
The conjecture of Carlip and Solodukhin makes a fairly precise statement about how this
infinity is regularized.

Quantum field theorists familiar with the Wilsonian approach to renormalization may
be somewhat uneasy with the last sentence of the penultimate paragraph because it is well
known that regularizations of quantum field theory have non-universal features. A possible
interpretation of this non-universality may have to do with the meaning of a time-like tra-
jectory in terms of actual physical measurements. A time-like trajectory is an abstraction
of the trajectory followed by a real physical detector. In a theory of quantum gravity, a real
physical detector has to deal with several competing pressures. It must not be too small and
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light, in order for us to be able to neglect the quantum fluctuations of its center of mass. It
must not be too heavy, in order to minimize its gravitational effect on other systems whose
properties it is measuring. Its information gathering and storage capacity should be as large
as possible, but not so large that it collapses into a black hole. The quantum fluctuations of
the center of mass are most easily dealt with. Even miniscule objects of sufficient internal
complexity, like grains of dust with a volume of 10−3 cm. have decoherent center of mass
motion for times so long that they are essentially the same number expressed in Planck
units as in ages of the universe. The real issue, as shown by the CKN bound, is information
gathering and storage capacity. So perhaps one should say that the real reason that finite
entropy, truly local physics has proven so hard to capture by rigorous mathematics, is that
it is intrinsically ill defined because we cannot make a perfect detector that doesn’t collapse
into a black hole. We can make rigorous mathematical models of the most perfect detector
one can make, but there will not be a single ”correct” one, which we can verify with infinite
precision. If we lived in an imaginary world with Minkowski or AdS asymptotics, and had
infinite time on our hands, things might be different, but we appear to be doomed to suffer
the slings and arrows of outrageous de Sitter space, and live in a mathematically imprecise
world, until our local group of galaxies collapses into a black hole.

3.1 Phenomenological Consequences of the Fluctuation Formula

We have argued elsewhere [31] that the universal formula for fluctuations in causal dia-
monds forms the basis for a theory of Cosmic Microwave Background Fluctuations and
Early Universe cosmology that has very few parameters and no ”Transplanckian” problems.
In addition, it lends support to the contention [35] [6] [37] that interferometer experiments
might detect quantum gravitational fluctuations in the near future. In that context, the most
important unsolved problem is to obtain a first principles calculation of the Power Spectral
Density of the Fluctuations: the correlations between fluctuations in two time separated
diamonds. Work on this problem is ongoing.

4 ’t Hooft Commutators and the Diamond CFT

To conclude, I want to point out a connection between the ’t Hooft commutation relations,
which follow from Stop and entropy fluctuations captured by the Carlip-Solodukhin conjec-
ture. The ’t Hooft operators X± are defined on the past and future boundaries of a causal
diamond, and are ”canonically conjugate” to each other at equal time, where equal time
means the bifurcation surface of the diamond. The Carlip-Solodukhin ansatz postulates
identical CFTs living on longitudinal intervals on the past and future boundaries of the di-
amond. Notice that when we switch from the past to the future boundary, the role of light
front time and longitudinal coordinate are exchanged.

If we imagine that the past and future boundaries are both described by the same 1 + 1
dimensional CFT, then natural objects that would have something like canonical commuta-
tion relations are the time and space components of a conserved U(1) current. These vanish
except at coinciding points, and this fits the fact that the operators X± are only at ”equal
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time” on the bifurcation surface of a single diamond2 . The fact that they are related to the
time and space components of a current matches the switch between time and longitudinal
coordinate between past and future boundary.

To obtain the transverse structure of the ’t Hooft commutation relations, we conjecture
that the U(1) currents are constructed as bilinears in 1 + 1 dimensional Dirac fields that are
also spinor fields in the transverse dimensions [31]

X+/−(Ω) =

∫
f(x∓)ψ̄aA(x∓),Ω)γ

0/1
ab (D)−1AB(Ω,Ω′)ψbB(x∓,Ω′). (4.1)

γ are the two dimensional Lorentzian Dirac matrices and D is the Riemannian Dirac operator
in the transverse space. x± are longitudinal coordinates on the past and future boundaries.
The boundaries share one instant of time in common and the function f is chosen so that
the Schwinger term in the equal time commutator between time and space components of
the current integrates to 1. We then get the projection of the tensor product D−1⊗D−1 on
the zero form subspace of the tensor product of two spinor bundles, which by Lichnerowicz
theorem is 4 − 1

4
R. This is not quite the ’t Hooft relation, but it is close. The mismatch

suggests that the connection on the spinor bundle might not be the Riemannian connection,
but contain an extra U(1) factor.

Some further subtleties: both the two dimensional CFT, and the eigenfunction expansion
of the transverse Dirac operator must be cut off in order to be compatible with the principle
that a finite area diamond has finite entropy. This should not bother us. The arguments
of ’t Hooft and [3] are semi-classical and do not incorporate the covariant entropy bound.
In addition, the two dimensional field theory cannot be a theory of free two dimensional
fermions. That model is integrable and cannot incorporate the fast scrambling [38] properties
of horizons. What we need are non-integrable, conformally invariant perturbations of the
free fermion theory, which preserve the U(1) current algebra relations that we used above.
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