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Abstract

Inflationary cosmology has proved to be the most successful at

predicting the properties of the anisotropies observed in the cosmic

microwave background (CMB). In this essay we show that quantum

field renormalization significantly influences the generation of primor-

dial perturbations and hence the expected measurable imprint of cos-

mological inflation on the CMB. However, the new predictions remain

in agreement with observation, and in fact favor the simplest forms

of inflation. In the near future, observations of the influence of gravi-

tational waves from the early universe on the CMB will test our new

predictions.
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One of the most exciting ideas of contemporary physics is to explain the

origin of the observed structures in our universe as a result of quantum fluc-

tuations in the early expanding universe. As first shown in the sixties [1], the

amplification of quantum field fluctuations is an unavoidable consequence in

a strongly time-dependent gravitational field [2, 3]. Fundamental physical

implications were implemented some years latter to culminate, in the seven-

ties, with the prediction of the evaporation of black holes with a black-body

spectrum [4] and, in the eighties, when the inflationary model of the universe

was introduced [5], predicting that small density perturbations are likely to

be generated in the very early universe with a nearly scale-free spectrum

[6]. In the nineties, the detection of temperature fluctuations in the cosmic

microwave background (CMB) by the COBE satellite [7] appeared to be con-

sistent with the inflationary cosmology predictions. In the present decade,

the predictions of inflation have been confirmed in the specific pattern of

anisotropies imprinted in the full sky map of the CMB, as reported, for in-

stance, by the WMAP mission [8]. Moreover, an inflationary-type expansion

also predicts the creation of primordial gravitational waves [9], whose effects

still remain undetectable. Forthcoming experiments, such as the PLANCK

satellite [10], may measure effects of relic gravitational waves and offer new

trends for gravitational physics in the next decade. Therefore, it is partic-

ularly important to scrutinize the quantitative predictions of quantum field

theory in an inflationary background. This is the aim of this essay.

As remarked above, a strongly time-dependent gravitational field neces-

sarily amplifies vacuum fluctuations. This happens, typically, in a rapidly

expanding universe and also in a gravitational collapse. The event horizon

of a black hole acts as a magnifying glass that exponentially stretches very
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short wavelengths to macroscopic scales and generates a thermal flux of out-

going particles. Similarly, during exponential inflation, ds2 = −dt2+e2Htd~x2,

a typical physical length, with comoving wavenumber k, increases exponen-

tially k−1eHt and reaches the Hubble radius, H−1 =constant, at some time tk

(ke−Htk = H). These quantum fluctuations produce scale-free density per-

turbations and relic gravitational waves via a quantum-to-classical transition

at the time of Hubble horizon exit tk. The cosmic expansion farther stretches

these scale-free primordial perturbations to astronomical scales.

Let us focus on the production of relic gravitational waves by considering

fluctuating tensorial modes hij(~x, t) in an exponentially expanding, spatially

flat universe: gij = a2(t)(δij + hij), with a(t) = eHt. The perturbation field

hij can be decomposed into two polarization states described by a couple of

massless scalar fields h+,×(~x, t), both obeying the wave equation ḧ + 3Hḣ −
a−2∇2h = 0 (see, for instance, [11]; we omit the subindex + or ×). On

scales smaller than the Hubble radius the spatial gradient term dominates the

damping term and leads to the conventional flat-space oscillatory behavior of

modes. However, on scales larger than the Hubble radius the damping term

3Hḣ dominates. If one considers plane wave modes of comoving wavevector

~k obeying the adiabatic condition [1, 2, 3] and de Sitter invariance one finds

h~k(~x, t) =

√

16πG

2(2π)3k3
ei~k~x(H − ike−Ht)ei(kH−1e−Ht) . (1)

These modes oscillate until the physical wave length reaches the Hubble

horizon length. A few Hubble times after horizon exit the modes ampli-

tude freezes out to the constant value |h~k|2 = GH2

π2k3 . Because of the loss

of phase information, the modes of the perturbations soon take on clas-
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sical properties [12]. The freezing amplitude is usually codified through

the quantity ∆2
h(k) ≡ 4πk3|h~k|2. Taking into account the two polariza-

tions, one easily gets the standard scale free tensorial power spectrum [11]

Pt(k) ≡ 4∆2
h(k) = 8

M2

P

(

H
2π

)2
, where MP = 1/

√
8πG. It is easy to see that

∆2
h(k) gives the formal contribution, per d ln k, to the variance of the gravity

wave fields h+,×

〈h2〉 =

∫

∞

0

dk

k
∆2

h(k) . (2)

Due to the large k behavior of the modes the above integral is divergent. It

is a common view [11] to bypass this point by regarding h(~x, t) as a classical

random field. One then introduces a window function W (kR) in the inte-

gral to smooth out the field on a certain scale R and to remove the Fourier

modes with k−1 < R. One can also consider unimportant the value of 〈h2〉
and regard the (finite) two-point function 〈h(x1)h(x2)〉, uniquely defined by

∆2
h(k), as the basic object. However, 〈h2〉 represents the variance of the

Gaussian probability distribution associated to h(~x, t), which means that at

any point h(~x, t) may fluctuate by the amount ±
√

〈h2(~x, t)〉 defining this way

a classical perturbation. It is our view to regard the variance as the basic

physical object and treat h as a proper quantum field. Renormalization is

then the natural solution to keep the variance finite and well-defined. Since

the physically relevant quantity (power spectrum) is expressed in momentum

space, the natural renormalization scheme to apply is the so-called adiabatic

subtraction [13], as it renormalizes the theory in momentum space. Adia-

batic renormalization [14, 2, 3] removes the divergences present in the formal
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expression (2) by subtracting counterterms mode by mode in the integral (2)

〈h2〉ren =

∫

∞

0

dk

k
[4πk3|h~k|2 −

16πGk3

4π2a3
(

1

wk

+
ȧ2

2a2w3
k

+
ä

2aw3
k

)] , (3)

with wk = k/a(t). The subtraction of the first term (16πGk3/4π2a3wk) can-

cels the typical flat space vacuum fluctuations. The additional terms, pro-

portional to ȧ2 and ä, are necessary to properly perform the renormalization

in an expanding universe.

For the idealized case of a strictly constant H, the subtractions exactly

cancel out the vacuum amplitude [13], at any time during inflation, producing

a vanishing result for the variance. Therefore, the physical tensorial power

spectrum, the integrand of (3), is zero. Note that this surprising result

does not contradict the fact that quantum fluctuations in de Sitter space

produce a Hawking-type radiation with temperature TH = H/2π [15]. This

temperature stems from the comparison of the modes (1) with those defining

the vacuum of a static observer with metric ds2 = −(1 − H2r2)dt̃2 + (1 −
H2r2)−1dr2+r2dΩ2. The different time/phase behavior of both sets of modes

(captured by non-vanishing Bogolubov coefficients) produces the Hawking

temperature. However, their amplitudes are exactly the same [16].

Does it mean that inflation does not produce gravitational waves? No.

For more realistic inflationary models, H ≡
√

8πG
3

V (φ0) slowly decreases as

φ0 (the classical homogeneous part of the inflaton field) rolls down the po-

tential towards a minimum. Tensorial perturbations are then expected, on

dimensional grounds, to be produced with amplitude proportional to Ḣ, in-

stead of H2. The form of the modes is now h~k(t, ~x) = (−16πGτπ/4(2π)3a2)1/2

×H
(1)
ν (−kτ)ei~k~x, were the index of the Bessel function is ν =

√

9/4 + 3ε and
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ε is the slow-roll parameter ε ≡ −Ḣ/H2 = (M2
P /2)(V ′/V )2. The conformal

time τ ≡
∫

dt/a(t) is given here by τ = −(1 + ε)/aH. The loss of phase

information in the modes still occurs at a few Hubble times after horizon

exit, converting the fluctuations to classical perturbations. Therefore, it is

natural to evaluate the new integrand of (3) (i.e, the tensorial power spec-

trum) a few Hubble times after the time tk. Since the results will not be far

different from those at tk, we use the time tk to characterize the results. The

new tensorial power spectrum turns out to be then

Pt(k) =
8α

M2
P

(

H(tk)

2π

)2

ε(tk) ≡ − 8α

M2
P

Ḣ(tk) , (4)

where α ≈ 0.904 is a numerical coefficient. As expected, it is just the de-

viation from an exactly constant H, parameterized by ε, which generates a

non-zero tensorial power spectrum.

The above result would then imply that the tensor-to-scalar ratio r =

Pt(k)/PR(k) may be well below the standard predictions of single-field in-

flationary models. However, this is not necessarily the case since the scalar

power spectrum PR(k), which constitutes the seeds for structure formation,

is also affected by renormalization. A detailed calculation, sketched in [17],

leads to

PR =
1

2M2
p ε(tk)

(

H(tk)

2π

)2

(αε(tk) + 3βη(tk)) , (5)

where β ≈ 0.448 is numerical coefficient and η ≡ M2
P (V ′′/V ) is the second

slow-roll parameter. Note that this contrasts with the standard prediction:

PR = 1
2M2

p ε(tk)

(

H(tk)
2π

)2

[11]. Since the scalar amplitude is also modulated by

5



the slow-roll parameters the ratio r is given by

r =
16ε2(tk)

αε(tk) + 3βη(tk)
, (6)

which contrasts with the standard result r = 16ε(tk). To translate this

difference to a closer empirical level we have to introduce the scalar and

tensorial spectral indices ns ≡ 1 + d ln PR/d ln k, nt ≡ d ln Pt/d ln k, and

the running tensorial index n′

t ≡ dnt/d ln k. The standard expression for

the relation between the ratio r ≡ Pt/PR and spectral indices (consistency

condition) is: r = −8nt. It is expected to be verified by any single-field slow-

roll inflationary model, irrespective of the particular form of the potential.

However, if we invoke renormalization we get a more involved consistency

condition r = r(nt, ns, n
′

t). For instance, in the simplest case of n′

t ≈ 0, and

approximating α ≈ 2β, the new consistency condition becomes

r = 1 − ns +
96

25
nt +

11

5

√

(1 − ns)2 +
96

25
n2

t . (7)

Note that this expression allows for a null tensorial tilt nt ≈ 0 while being

compatible with a non-zero ratio r ≈ 16
5
(1 − ns).

We can compare the new predictions with the standard ones on the basis

of the five year WMAP results. We find [17], see Figure 1, that the new pre-

dictions agree with observation and improve the likelihood that the simplest

potential energy functions (quadratic and quartic, respectively) are responsi-

ble for driving the early inflationary expansion of the universe. The influence

of relic gravitational waves on the CMB will soon come within the range of

planned satellite measurements, and this will be a definitive test of the new

predictions.
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Figure 1: Plot of r versus ns. The contours show the 68% and 95% CL
derived from WMAP5 (in combination with BAO+SN) [8]. We consider
two representative inflation models: V (φ) = m2φ2 (solid line), V (φ) = λφ4

(dashed line). The symbols show the prediction from each of this models in
terms of the number N of e-folds of inflation for the monomial potentials.
The top part corresponds to the prediction of our formulae, while the bottom
one corresponds to the standard prediction.
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[17] Agulló I., Navarro-Salas J., Olmo G.J. and Parker L., arXiv:0901.0439.

9


