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Summary

Penrose has given a twistor description Qf all self-dual complex
Riemannian spacetimes. We modify his construction to characterize all
complex Riemannian spacetimes and all complex teleparallel spacetimes.
This construction may be useful in finding noﬁ-self—dual solutions to
the gravitational field equations (Einstein's or otherwise) without or
with sourcés. It may also lead to a nonperturbative method of computing
path integrals. Whereas Penrose shows that a sélf—dual spacetime may
be specified by a deformation of projective twistor space (the set of
o-planes in complex Minkowski space), we find that a Riemannian or
teleparallel spacetime may be described by a deformation of projective

ambitwistor space (the set of null geodesics in complex Minkowski space).



One of the most interesting recent developments in the theory
of gravity has been Roger Penrose's translation of the problem of
finding self-dual spacetimes from the language of differential geometry
into that of algebraic geometry (i.e., "twistors").1 This permits one
to obtain a large class of spacetimes which satisfy Einstein's equations,
without having to work directly with nonlinear partial differential
equations. In this essay, we remove the self-duality restriction on
Penrose's translation, and thereby pave the way to obtaiﬁing the general
solution of Einstein's equations.

There are some virtues to the self-duality condition. A spacetime
with metric g is called self-dual (or right—fiat, or left-handed) if

its curvature satisfies

a

R g2 ef | (1)

i
bed ~ 2 Scdef N b

Taking the trace of this equation, we find that the Ricci tensor
vanishes; hence the self-dual spacetimes automatically satisfy the
vacuum Einstein equations. They are, therefore, potentially very
useful as ''gravitational instanto.ns"3 about which to do perturbations
in a Euclidean path integral formulation of quantum gravity. Further,
as Penrose emphasizes in his paper ''The Nonlinear Graviton",1 these
self-dual spacetimes are likely candidates for the one-particle states
in some (as yet undiscovered) quantum theory of gravity.

There are, however, several reasons why the self-duality condition
is overly restrictive and why one might want to generalize Penrose's
construction to spacetimes which are non-self-dual (neither self-dual
nor anti-self-dual). Firstly, it follows from equation (1) that any

self-dual spacetime necessarily has complex curvature, and so it can



not represent a Lorentz éignature metric on a real manifold. This
precludes their use in classical spacetime physics. Secondly, since
all self-dual spacetimes satisfy the vacuum Einstein equations, they
cannot contain any sourcefields. This limits their use in quantum
interaction physics. Thirdly, to build a valid quantum theory of
gravity, one may find it necessary to modify the gravitational field
equations (for example, by adding quadratic curvature terms to the
Lagrangian, or by adding torsion to the connection). One would then
want to construct solutions to these new equations which are not
necessarily Ricci-flat, let alone self-dual. Finally we note that to
perform a nonperturbative calculation of a path integral, it should be
necessary to sum over all spacetime geometries, and not just those
which satisfy the Einstein (or any other) field equations.

These physically restrictive aspects of the self-duality condition
have led us to seek, and to find, a modification of the Penrose
correspondence so that we have a twistor description of all complex
Riemannian spacetimes.A’5 Indeed (for reasons which will become clear
shortly), we obtain these through a twistor description of an even
larger class of spacetimes--those which are "teleparallel".6 A tele-
parallel spacetime is a manifold M with a metric g and a connection

I' which is metric compatible (Vg = 0) and flat (ﬁa 0 , where

bed

ﬁabcd is the curvature of T ). Thus, unless g is also flat, T

must have torsion. The name teleparallel was chosen because the

A
vanishing of R? says that (in a simply connected region) parallel

bed

transport according to I is path-independent so that there is a

global notion of parallel.



We emphasize that every (parallelizable) complex Riemannian.
spacetime is contained in the class of teleparallel spacetimes. This
is true in the sense that, given (M,g), we may construct a corresponding
teleparallel (M,g,I') by picking any framefield which is orthonormal
according to g , and then defining I to be that connection relative
to which the framefield is everywhere parallel. The I curvature then
vanishes, while the metric curvature remains that of (M,g) . Thus,
although our construction actually produces a twistor description of
all teleparallel spacetimes, it includes a twistor description of all
Riemannian spacetimes.

Before discussing the twistor objects which we have proven are in
one-to-one correspondence with the teleparallel spacetimes, we recall
how Penrose's nonlinear graviton correspondence works. For each complex
Riemannian self-dual spacetime M which is a deformation7 of complex
Minkowski space M, he shows, there corresponds a unique deformation
PT  of projective twistor space PT which preserves certain additional
structures (to be described below). To understand PT and PI  and
to see how these relate to M and M (why, for example, a given M
contains enough information to construct a unique PT , and vice-versa)
it is useful to consider the '"totally null planes" in an arbitrary
complex spacetime. These are the 2-complex dimensional, totally
geodesic surfaces on which every tangent vector is null. A straight-
forward calculation shows that every totally null plane is spanned by
either a self-dual bivector or an anti-self-dual one. Those spanned
by anti-self-dual bivectors are called o-planes while the self-dual

ones are called B-planes.



In M , the set of o-planes is parametrized by PT (which
mathematically is 3-dimensional complex projective space CPB), while
the set of PB-planes is parametrized by dual projective twistor space
PT* (which is also CP3, but with the opposite complex structure).

In a curved spacetime M , however, there may or may not be any totally
null planes. 1In fact, a given spacetime is self-dual iff (i) the |
a~planes egist, (ii) there are as many O-planes in M as there are
in M (3-complex dimensions' worth), and (iii) the connection provides
a path independent notion of whether any given pair of a-planes are
parallel. Thus, for a given self-dual M , the space PT is defined
to be a parameter space for the set of «-planes and may be shown to be
a deformation of PT . This space PT carries two additional structures
which are induced by M . First, there is an equivalence relation on
PI  which says that two‘points of PT are equivalent if the corresponding
o-planes in M are parallel. This makes PT into a fibre bundle over
the space D of a-plane orientations. Second, on each fibre of PT ,
there is a volume element U .

The nonlinear graviton correspondence is one-to-one; thus there
is a converse construction. That is, if one is given a space PT
which is’a deformation of PT , if PT is a fibre bundle over D , and
if a volume element WU has been chosen on each fibre of PT , then as
Penrose shows, one can reconstruct' the spacetime M . The equivalence
relation is used to contruct the self-dual conformal geometry, while
the volume element WU dis used to fix the scale of the metric.

Since, as just noted, spacetimes which are non-self-dual do not
contain a full complement of totally null planes, we need something

else on which to base a twistorial description of such spacetimes. All



complex Riemannian spacetimes (with metric-compatible connection) do
contain a 5-dimensional set of null geodesics; so we focus on them.

In complex Minkowski space, the set of null geodesics is para-
metrized by projective ambitwistor space PA , which is a five-complex
dimensional hypersurface8 in PT x PT* . Just as with PT, there is
an equivalence relation on PA which says that two points in PA
are equivalent if the corresponding null lines in M are parallel.
This equivalence relation defines a projection map m: PA + E so that

PA is a fibre-bundle over the space E of null directions in M

In an arbitrary complex spacetime M with metric-compatible
connection [, the set of null geodesics of [' 1is parametrized by
a manifold PA which we find is always a deformation7 of PA . 1If,
like PA , the "deformed ambitwistor space'" PA 1is a fibre-bundle over
E , then in M there must be a path-independent notion of whether or
not any given pair of null geodesics is parallel. A spacetime with
such a property is teleparallel. Hence we conclude that there is a
one-to-one correspondence between, on the one hand, deformations PA
of PA which are bundles over E ; and on the other hand conformal
equivalence classes9 of complex teleparallel spacetimes M .

To complete the twistor description of teleparallel spacetimes,
we need a twistorial object thch can distinguish among conformally
equivalent spacetimes. But to define this object, we must first
describe some additional structure in PA : Corresponding to each
point p in M , there is a unique holomorphic section sp of the
bundle PA (i.e., sp: E-> PA ). The image Im(sp) of 3? in PA
corresponds to the set of null geodesics in M which intersect at p . Since

Im(sp) is a subset of PA , we may consider the restriction of the



tangent bundle T(PA) to Im(sp) . As a subset of this T(PA) Im(sp)

we define VT (PA) , the vertical tangent bundle at Im(sp) .

Im(sp)

which consists of all X e T(PA; such that 7,X =0 . It

Im(s_)

P
turns out that the extra structure we need to fix the conformal factor
is a set of l1l-forms {Gp} , one for each section sp , acting only on
the verticél vectors:

o : VT(PA) - C
P Im(sp)

Each 1-form Op determines the value of the conformal factor at the
point p € M , but not uniquely (i.e., more than one Op may determine
the same conformal factor). Therefore, to get a unique twistorial object
corresponding to the conformal factor, we demand that each Op must
satisfy further conditions. Recall the definition of PA , which
implies the existence of an imbedding «: PA = PT x PT*. 1t follows
that the volume element U on the fibres of PT which is preserved

in the Penrose correspondence can be pulled back to PA , as can its
counterpart J on PT#. We thus have a pair of 2-forms, Vv := L*U
and v := {*J defined on PA . In deforming PA into PA , both WV
and Vv are automatically preserved, up to scale. Thus we can define
K to be the set of all one-forms A on PA which satisfylo
AAv=0and AAV=0. Among a set of Op's which specify a
particular conformal factor, there is a unique OP which lies in K .

Thus we get the following result:



There 18 a one-to-one correspondence between
(1) Teleparallel spacetimes M which are deformations of
complex Minkowski space ' M
and
(2) Deformations PA of projective ambitwistor space PA
such that PA s a bundle over E with a I-form

op:VT(PA) C specified for each

In(s )~
. P
cross-section sp: E -~ PA ; demanding further that op e K.

Notice that this correspondence says nothing about whether the
spacetimes M satisfy any field equatiohs (apart from the teleparallel
condition which, we have emphasized, in no way excludes any complex
Riemannian spacetime). For some purposes, this is a virtue. Indeed,
our twistorial characterization of non-self-dual spacetimes, with its
separate encoding of the conformal geometry into PA and of the
conformal factor into the choice of Op , seems especially well-suited
for some formulations of a quantum field theory of grayity. Hawking,
for example, has suggested that the quantum path integral over all
spacetime geometries should be broken up into an integral over all
conformal geometries and an integral over all conformal factors. This
may be accomplished by first integrating over all deformations of PA
and then integrating over all choices of Op .

Still, one would like to find a twistorial version of gravitational
field equations. One way to seek this would be to translate well-known

field equations (such as Einstein's) from spacetime language into that



of PA , Gp , etc., via the correspondence. It is then quite possible
that the tools of algebraic geometry would enable us to find many
interesting_solutions which have not been obtained by working directly
with the differential equations on M .

An alternate approach, more in line with the spirit of the
"twistor programme' of Penrose, would be to focus on the twistor side
of the correspondence and seek (physically reasonable) field equations
which appear most natural in terms of PA and op . We note two such
possibilities: The first is suggested by our experience with Yang-Mills
theory.ll There one finds that a general Yang-Mills connection corres-
ponds to a fibre bundle over PA ; while the conditionvthat the
connection satisfy the Yang-Mills equations corresponds to the vanishing
of the lowest order obstruction to extending that bundle from PA  to a
neighborhood of PA regarded as a hypersurface in PT x PT* . Similarly,
the gravitational field equations may be the vanishing of the lowest
order obstructions to extending the deformation of PA and the choice
of Op from PA to a neighborhood of PA within PT x PT*# . We do
not yet know what differential equations in spacetime correspond to
these conditions. They may be the field equations for Einstein's theory
or some other metric theory, since any metric theory may be regarded‘as
a teleparallel theory in which the teleparallel connection is ignored.
Or they may be the field equations for some truly teleparaliel
theory.6

A second possible conjecture, involving only QP ,» may lead to a
field equation for the conformal factor of M . One can demand that

each 1-form Op be the restriction to Im(sp) of a globally-defined



l-form o: VI(PA) ~ C . Again, we do not yet know the corresponding

differential equation in spacetime, but we do know that this condition
picks out at most one teleparallel spacetime from each conformal equi-
valence class (thus fixing the conformal factor). This is also a pro-
perty of the equation R = const, where R is the scalar curvature of
the metric g .

Whether or not.these conjectures prove to be useful, we believe that
it should not be too difficult to re—express any physically reasonable
set of (metric or teleparallel) gravitational field equations in
twistorial language using our correspondence. It may then be possible
to use the tools of algebraic geometry to find spacetime solutions to

these field equations.
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Footnotes

1. The twistorial description of self-dual spacetimes is set up
in Penrose's papers on the '"Nonlinear Graviton'" in Penrose, R.,
(1976), GRG 7, 171; and Penrose, R., (1976), GRG 7, 31. A large
class of self-dual spacetimes is actually constructed using this

correspondence in Ward, R., (1978), Proc Roy Soc. A 363, 289.

2. The totally antisymmetric tensor €& wused in this essay is that
for a Lorentz signature metric. For Euclidean signature, replace

i€ by the Euclidean € .

3. See, e.g., Gibbons, G. W., and Hawking, S. W., (1977), Phys Rev.

D 15, 2752.

4. A "complex Riemannian spacetime" consists of a 4-complex dimensional
manifold M and an analytic (not Hermitian) metric g . The metric-
compatible and torsion-free connection { } is then uniquely

determined in the usual form.

5. Our construction, like that of Penrose, only produces the geometry

in a normal neighborhood.
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Teleparallel geometries are also called fernparallel geometries

or geometries with an absolute parallelism. Theories of gravity
based on teleparallel geometries were studied originally by
Einstein, Cartan, and Weitzenbach, and more recently by Mgller and
Hehl, Ne'eman, Nitsch, and von der Heyde. [See the article by
Hehl, Nitsch, and von der Heyde in Held, A. (ed.), (1980), General

Relativity and Gravitation, Plenum Press, N.Y., for a review which

includes ' a fairly complete list of references.] In fact, the PPN
expansion for the teleparallel theory proposed by Hehl et al. agrees
with that for the standard Einstein theory up to fifth powers of the
velocity; so that the theory agrees with all present solar system

experiments.

Object A 1is a deformation of object B if there is a l-parameter
family of objects C(t) such that C(0) = B and C(1) = A .

PA is the quadric z%W_=0 in PT x PT* = cP? x P> . The
embedding is obtained by recognizing that every null line in M
lies in a unique o-plane and in a unique (-plane and is

precisely their intersection.

Two teleparallel geometries are conformally equivalent if their
everywhere parallel orthonormal framefields are proportional.
The square of the proportionality factor is the conformal factor

relating the metrics.



10.

11.

Note that the undetermined scales of Vv and Vv are irrelevant

in defining K .

See Isenberg, J., Green, P., and Yasskin, P., (1978), Phys Lett.

78B, 462; and Witten, E., (1978), Phys Lett. 77B, 39%4.
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