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Summary

Superstring theories provide an appropriate framework for studying the
time variation of fundamental coupling constants. The present time-variation
of coupling constants in superstring theories with currently favorable inter-
nal backgrounds critically depends on the shape of the potential for the size
of internal space. If the potential is almost flat, as in perturbation theory
to all orders, the present value of |G/G| for Newton's gravitational constant

-1l yr_1 which 1s just at the edge

is calculable and estimated to be 1 x 10
of the present observational bound for G/G. If the potential has a minimum

with finite curvature due to unknown nonperturbative effects, G/G will become
unobservably small. The improvement of the measurement of G/G of one or two

orders of magnitude would discriminate between the two situations. Problems

with the time variation of other coupling constants are also discussed.
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The time variation of fundamental constants may provide a connection

between cosmology and particle physics. This idea can be traced back to

(1]

Dirac, although his original proposal for variation in Newton's

[2]

gravitational constant G seems not supported by observations.

(3]

Very recently superstring theories appear to be promising candidates

for a consistent quantum theory unifying all known interactions including
gravity. They provide a suitable framework for studying the time variation of
fundamental constants. The consistency of superstring theories fixes the

space-time dimensionality to be ten, six of which form a very small compact

manifold K(~10_32cm). The metric and other bosonic backgrounds in K are

constrained by string-compactification and particle-phenomology
[4,5]

considerations. The coupling constants in the four-dimensional world are

related to those in ten dimensions by a factor of the inverse volume of K.
The cosmology in the higher-dimensional universe governs the evolution of the
usual three-space as well as that of K and, through the latter, dynamically

determines the time variation of coupling constants in four dimensions.

Generally in a higher-dimensional field-theory approach,[G] quantum effects in

K[7] give rise to an effective potential which may fix the size of the

internal space R6 in vacuum and influences its cosmological evolution. but in

. . . . : 8
superstring theories, Witten’s nonrenormalization theorem[ ] tells us that

such a potential for R6 is flat up to all orders in perturbation theory. So
far, the study of nonperturbative supersymmetry-breaking effects, including

world-sheet instantons, also has failed to produce a potential with a minimum

10]

at finite R,. 1In this essay we will describe some recent work[g’ on the

6

time variation of Newton's gravitational constant in superstring theories and

its critical relationship to the shape of this potential.



We find that if the potential is flat the present value of é/G is

calculable; for example, for an open universe
: 2.2

where H, is the Hubble constant, t

0 the age of the universe, 9 the decelera-

0

tion parameter, and O, = 8n®G0p0/3Hg the density parameter. Here the

0
subscript O denotes the present value of the quantity. We estimate |C/G|O to
be in the range 1 X 10-11:tl Yr_l, which overlaps the present observational
: -11 -1 [11] . .
upper bound |G/G| =1 x 10 Yr ~. However, if the potential really has

a minimum at finite R6’ (C/G)0 will be suppressed and become unobservably
small. So an improvement on the measurements of G/G will give us important
information about the shape of the potential. Some remarks about time
variation of other coupling constants in superstring theories will be
discussed at the end of the essay.

The low-energy (field-theory) limit of, say, the E, X E, heterotic super-

8 8
(3]

string theory, which is phenomenologically promising from the point of view

of particle physics, is given by N = 1 supergravity coupled to N = 1 super

[12]

Yang-Mills in ten dimensions. We start with the equations of motion in
the bosonic sector of the theory which includes the gravitational and Yang-
Mills fields as well as an antisymmetric two-rank tensor (Kalb-Ramond) field
and a scalar (dilaton) field. As usual, we assume that the cosmological
metric is of the Robertson-Walker form with two scale factors R3(t) and R6(t)
for three-space and internal six-space K respectively. For the background
bosonic fields in K, we take the well-known Candelas-Horowitz-Strominger-
Witten configuration,[Q] which is currently favorable by particle-physics
considerations, with minimal modification in conformity to the introduction of

R6(t). Two features of this configuration are essential to our discussion:

1) Because of their conformal invariance all classical equations of motion



except the Einstein equations for R3(t) and R6(t) are satisfied; 2) these
internal backgrounds, though nonvanishing, have no contribution to internal
stress tensor and, therefore, do not provide a potential to fix the internal
size. (In particular, the internal metric is a Calabi-Yau metric which is
Ricci-flat.) By Witten’s non-renormalization theorem, the situation remains
unchanged even with higher-order perturbative quantum effects included. Since
we are interested in cosmology at present times it is safe to ignore the

. 13
internal components of the thermal stress tensor of matter.[ ]

In an open universe (k = -1), the large-t asymptotic solution[g] is given

by R3(t) ~ t, R6(t) = R60 = const, and is stable under perturbations r3(t)

and r6(t) of R3(t) and R6(t). Assuming that matter density P can be treated

as a small quantity in the present Universe and neglecting terms of order

(tP/t)z, tP ~ 10-43 sec being Planck time, r3(t) and r6(t) can be solved from

the Einstein equation and expressed in terms of the cosmological parameters

QO’ HO’ 4, and tO' The final result for (C/G)0 = —6f6(t0) is given by (1).
(4]

Thus, using the most "satisfactory" set of parameters,

1

H

0’ qo’ 0)

(0.05, 0.025, 67 km sec Mpcnl) and the extreme sets of parameter, (QO, qO,

Hy) = (0.05, -0.925, 100 km sec™! Mpc'l) or (1, 0.5, 40 km sec™t Mpc'l) and

ty = 1.6 x 1010 yr, we estimate the range for |¢/G|o to be 1 X lO-11i1 yr_l.

Rigorously speaking, if QO is close to 1, the above perturbation calcula-

tion breaks down. One needs to use a computer but this would not change the
above estimation. The same estimation is expected to be true also for k = 0
or k = +1 cases. The key point here is that Einstein equations with Py * 0

does not allow R, = 0. Thus G/G = -6R6/R6 # 0. Since t, is the only relevant

6 0

cosmological time scale, (C/G)0 must be proportional to l/t0 with a

coefficient of order unity or, probably, one to two orders lower.



Now we assume that there is an effective potential for R6 due to unknown

nonperturbative quantum effects. 1If the potential is flat near R60’ the

result is the same as given above. If the potential has a minimum for finite

R6’ R must be located there. Assuming (ut)2 > > 1, p being a mass deter-

60
mined by the curvature of the potential at R60’ then
3 2.3 1 -3/2
r6(t) = 3 ﬂoHot0 #2t3 + t A cos (ut + §) (2)

The second oscillatory term vanishes after being averaged over the period

2n/p. The first term, compared to that for flat potential, is suppressed by

32

the factor (;n:o)_2 = [(10° eV)/p]z. So a very tiny mass p would make (C/G)O

in this case unobservably small. The conventional wisdom favors a not very

small p, since in four dimensions r, represents a Brans-Dicke-type scalar

6
field which would compete with gravitons and would have been observed if it is
massless. However, its coupling to matter might be anomalously weak; if so, a
flat potential for R6 is not in conflict with observations.

Here we have been concentrated on C/G, since theoretically it is indepen-
dent of the dilaton field, about which we know very little, and experimentally
extracting it from data is simple and direct. In contrast, the analysis in
unified string theories of the time variation of other coupling constants,
such as the fine-structure constant a and strong or weak coupling constants,
is much more complicated. This is because the time evolution of R6 will lead
also to a variation in the grand unification coupling constant and the latter,
in turn, gives rise to a variation in almost every coupling constant and
particle mass measured at low energies through renormalization-group running
which depends very much on the details of the physics between the grand-

unified scale (~1014 - 1015 GeV) and the weak scale (~102 GeV). Thus the

[15]

usual assumption made in previous analyses of data that only one coupling



constant under consideration is varying alone does not hold good in unified
theories. Furthermore, all other coupling constants except G depends on the
background value of the dilaton field. The time-dependence of the latter,
which we have neglected in our analysis of (C/G)O, might be important in
considering the variation of, e.g., a over a long period such as 5 X 109 yr,
as in some previous determination of &/a.[ls]

In conclusion, further improvement in measuring C/G can discriminate
between different shapes of the potential in superstring theories for the size
of internal space. If the potential is almost flat or has no minimum for
finite R6’ probably we are on the edge of observing G/G.
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