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SUMMARY

We have found a new class of ideal clocks within general
relativity. They are self-gravitating systems such as rotating
stars, rotating black holes and binary star systems. The
gravitational redshift of the observed peridd of rotation of
such clocks in a given, weak external gravitational field is
shown to be the same as that of an ideal atomic clock. Because
the clocks have structure and dynamics determined by gravitational
interactions, the full non-linear machinery of general relativity
must be used. This result is important for the binary pulsar
PSR1913+16, where the gravitatidna] redshift of the pulsar's
frequency caused by the companion's gravitational field is an

observable effect.
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Ideal clocks play a fundamental role in special relativity and
general relativity. Together with "rigid rods", they are the basic
tools for "taking the measure" of spacetime. For example, an ensemble
of identical ideal clocks, suitably synchronized, can be used to lay
down a time coordinate in spacetime, while an individual ideal clock
moving along some spacetime trajectory measures proper time along
that trajectory. The hallmark of an ideal clock is that its rate
as measured in a Tocal, momentarily comoving, inertial frame must
be independent of its motion through or its location in an external
gravitational environment. Thus, for example, a pendulum clock on
a rocket ship is not an ideal clock, since its.rate depends directly
on the acceleration of the ship relative to a local inertial frame.
On the other hand, an atomic clock is an ideal clock, since the
spacings of atomic or nuclear energy levels, whose values determine
the frequency of an emitted e]eétromagnetic quantum, are independent
of all but the most extreme tidal gravitational fields, such as might
occur near a spacetime singularity (see Misner, Thorne and Wheeler [MTW]
1973, §16.4 for discussion). In fact, any clock whose structure is
determined strictly by the non-gravitational laws of physics is a
candidate for an ideal clock, since, according to the Einstein
equivalence principle (EEP), the non-gravitational laws of physics

take their standard special relativistic forms in a local inertial

frame; therefore the structure and the frequency of such a clock will
be independent of the surrounding gravitational environment (see Will

1981 for detailed discussion of EEP).



An important observable consequence of this is the gravitational
redshift: if two identical ideal clocks are placed at different locations
in a static, weak gravitational field with potential U(x), then the
frequency or wavelength shift Z, defined by ZEEAv/vEE(vrec -vem]/vem,

has the value

2= a/c? = U o) - Ulxg)1/e®

where the subscripts "em" and "rec" denote the values at the event of
emission and reception of the signal that connects the two clocks.

If for example the gravitational field is provided by a distant body
of mass m, then U = Gm/R + O(R—Z), and if the receiving clock is at

"infinity", then
. 2
Z = -Gm/Rc . (1)

There are numerous different derivations of the gravitational
redshift. The popular "“inertial frame" derivation makes use of EEP
and the static nature of the gravitational field to argue that if the
frequency of a given type of atomic clock is the same when measured
in a local, momentarily comoving, inertial frame, independent of the
location or velocity of that frame, then the comparison of frequencies
of two clocks at rest at different locations boils down to a comparison
of the velocities of two local inertial frames, one at rest with respect
to one clock at the moment of emission of its frequency-determining
signal, the other at rest with respect to the other clock at the moment
of reception of the signal. The frequency shift is then a consequence
of the first-order Doppler shift between the frames (see for example

§38.5 of MTW). In none of these derivations does the structure of the



clock play any role whatsoever. This is because EEP makes a clean
separation between gravitational and non-gravitational interactions,
the former disappearing (modulo tidal effects) in Tocal inertial frames.

There is another class of c]ocks——se1f—grav1tat1ng clocks —whose
structure, by contrast, is strongly influenced by internal gravitational
fields. Examples are rotating stars, rotating black holes, binary star
systems and planetary orbits. Unlike atomic clocks, the periods or
frequencies of these systems are not determined by fundamental constants;
however, Tike atomic clocks, their frequencies-can be stable to some
desired degree of accufacy, thus once they have been calibrated
appropriately, they qualify completely as clocks.

But are they ideal? More particularly do they experience the same
gravitational redshift as atomic clocks? Unfortuﬁate]y, EEP cannot
guide us to an answer since it applies only to non-gravitational systems.
The structure of a gravitational clock is determined by general relativity,
and so the full, non-linear machinery of that theory must be used to
answer such a question. Although one might expect the outcome to be
the standard redshift as expressed in Eq. (1), the result is not
guaranteed. In fact, since the clock itself has self-gravitational
interactions, it produces its own gravitational redshift, for example,
of the frequency of an atomic clock located at its center. The internal
gravitational effects that produce this "central" redshift could, via
some non-linear interactions with the field of the external body,
modify the final redshift of the gravitational clock, so that instead

of Eq. (1), the shift might take the form

7 = -oc(ZC)Gm/Rcz , (2)



where o is some function of the central, atomic-clock redshift ZC of the
system. The more relativistic the system, the larger the central redshift;

for a system of mass M and characteristic size d, ZC is given roughly by

7~ -GM/dc?
C

" 10—8(

M/Me)(T a.u./d) , [close binary system]
N 10_](M/M )(10 km/d) , [neutron star]
O]

~ undefined . [black hole] (3)

Thus the nature of the gravitational clock could in principle affect the
gravitational redshift of its frequency.

Actually, this is more than just a matter of principle, it could
have important observable consequences, namely in the binary pulsar
PSR1913+16. The pulsar's period is affected by the gravitational
redshift produced by its companion and by the second-order Doppler
shift produced by its orbital motion, both effects being variable
because of the highly eccentric orbit. By measuring the variations
in the pulsar period (more specifically in the pulse arrival times),
observers have made the first accurate determination of the mass of
a radio pulsar. The result is 1.42 +0.06 M@ (Taylor and Weisberg 1982)
a value remarkably close to the Chandrasekhar mass 1limit for a
degenerate neutron core. A twenty per cent deviation from unity
of the parameter a(ZC) in Eg. (2) would produce a ten per cent change

in the pulsar's mass value.



In fact, such a modification is not necessary, for we have found

that the redshift of a gravitational clock is independent of its

structure, and is given by

Z = -Gm/Rc? : (4)

for an observer at infinity. Therefore, general relativistic clocks are

ideal.

As we have remarked before, a simple, universal derivation of this
fact, of the kind available for atbmic clocks fh EEP, is not possible
here. Instead we have considered three sbecific examples and used the
full machinery of Einstein's equations‘fogether with appropriate

approximations (details will be published elsewhere).

(i) Rotating Relativistic Star: This is the closest idealization
of the binary pulsar. We considered such a star fn the gravitational
field of a distant body of much smaller mass, modelled for our purposes
as a non-rotating spherical shell. We then used a simple matching
procedure together with a change of variables to show that, as a
function of the distance of the external body, the uniform angular

velocity of the star as observed at infinity is given by
2 =0 (1 - Gn/Re?) : (5)
where 2 is a function of the angular momentum, total baryon number and

other intrinsic parameters of the rotating star, and is independent of

R. Then

_ _ 2
Zoear = (@ - QO)/QO = -Gm/Rc” . (6)

This result is independent of the compactness of the star and of its

angular velocity.



(ii) Slowly Rotating Black Hole: We considered a slowly rotating

black hole perturbed by a stationary axisymmetfﬁc ring of matter. By
extending previous results of Will (1974,1975), we showed that the
observed angular velocity of the horizon Wy (angular velocity of the

generators of the horizon as seen from infinity) is given by

(c*/69)o, w1 -an/re®) L (7)

FN-

w =

H

where JH and Mir are the constant angular momentum and irreducible mass

of the black hole. Then

z, = ~Gm/Rc? | . (8)

This example represents the extreme in compactness, yet yields the same

redshift.

(iii) Binary Systems: Working in the post-Newtonian limit of

general relativity, we considered a binary system in the gravitational
field of a distant third body of much smaller mass. Initially, the
binary system was in a circular orbit, while the relative orbit of
the binary system and the third body was elliptical (in the sense of
osculating orbit elements). We then‘ca1cu1ated post-Newtonian cor-
rections to the observable "mean Tongitude" of the binary system
(Brouwer and Clemence 1961). The rate of change of this quantity -
defines the orbital period as measured at infinity: the result,

modulo constants is
_ 2
P = Po[l + Gm/Rc”) R (9)
where m is the mass of the third body. The resulting redshift is thus

_ -1 -1 _ 2
Zbinary = )/Po = -Gm/Rc” . (10)



Thus we have found a new class of ideal clocks —self-gravitating
general relativistic clocks. Although these clocks are unlikely to see
the same everyday use as do atomic clocks, their importance as probes
‘of relativistic gravity in systems such as the binary pulsar is assured.
Furthermore, their existence is another of several manifestations of

the elegance and simplicity of general relativity.
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