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ABSTRACT

Ten-dimensional superstring theories have been proposed as candidates for
a unified description of all the forces of nature. These theories reduce
to Einstein gravity coupled to Yang-Mills interactions at scales small
compared to the string tension. The phencmenologically promising
superstring theory, the heterotic string, 1is investigated at the high
temperatures and short distances relevant in the early universe. The
massive string modes alone constitute aﬁ unstable thermodynamic system with
negative specific heat. The conditions for equilibrium between the massive
string modes and the massless modes (radiation) are derived. The large
energy fluctuations of the system require the use of the microcanonical
ensemble. There 1is a maximum temperature which exceeds the temperature at
which the canonical partition function becomes divergent. Above a critical
volume there 1is a phase transition during which the massive string modes
must evapcrate. The possibilities of spontaneous compactification, large
entropy production and a solution of the horizon and flatness problems are

discussed.



I Introduction
Superstring theories are one of the most original approaches to the
development of a mathematically consistent quantum theory of gravity1.They
evolved from the Ramond—Neveu—Schwarz2 spinning string theory of the strong
interactions of hadrons.Along with their description of gravity these
theories can naturally incorporate matter with Yang-Mills ( non-abelian )

~

gauge 1interactions at scales smail compared to the Planck scale3 Mp
1019Gev. Since such gauge interactions are today the favored descriptions
of all non-gravitational (strong, weak and electromagnetic) processes, the
superstring theories are promising candidates for the elusive unified
theory of all physical interactions. The clue to their consistent quantum
description of gravity 1lies 1in the short-distance behavior of string
theories. A single string describes the propagation of an infinite number
of degrees of freedom - its normal modes. At distances 1longer than the
Planck length one sees only the massless modes and string theories reduce
to point-like quantum field fheories with which we are more familiar. In
such theories the gravitational coupling strength ( Newton's constant G )
has dimensions of inverse eneréy and physical amplitudes must grow with
energy to compensate the inverse powers in the coupling constant. This
growth with energy leads to an uncontrollable growth in the infinities
(divergences) of the quantum theory - the quantum Lagrangian requires the
addition of more and more counterterms at each order in the quantum loop
expansion and the theory is not renormalizable. This situation is familiar
in the history of the weak interaction with the dimensionful Fermi coupling
constant GF of the four-fermion interaction the analogue of Newton's

constant. The solution there was the replacement of the contact interaction

with the exchange of virtual massive gauge bosons. This weak interaction



theory of Glashow, Salam and Weinberg (GSW)ll was dramatically confirmed in
the last two years by the discovery of the weak interaction gauge bosons at
CERN5 and provided a description of the weak interactions in direct analogy
to the very successful Q.E.D description of electromagnetic interactions.
The superstring theory does something akin to the GSW theory for gravity -
it softens the very short distance behavior of gravity by replacing contact
interactions with the exchange of the massive modes of the string. All
indications so far are that the resultant theory is not only renormalizable
but in fact free of all ultraviolet divergences - it is finite. This adds
calculability to the virtues of string theories, sincé in non-finite
theories infinitely renormalized quantities are arbitrary- one simply fits
them the observed values. There are very few free parameters in
superstring theories. There is the string tension (which ought to be of
order the Planck mass squared) and possibly a Yang-Mills coupling strength.
The gravitational coupling is determinedrby these two and the Yang-Mills
coupling may even be determined by minimizing some potential of the
theory6.

There is one furthur novelty of superstring theories that will be
relevant to this paper. The closure of the Lorentz algebra necessary for a
consistent quantum theory requires that the theory be formulated in ten
space~-time dimensions, and the absence of hexagon gauge and gravitational
anomalies, which would couple unphysical currents, determines the gauge
group to be S0(32) or E8xE87. At present it is only really known how to
formulate the theory in ten-dimensional Minkowski space, but the
gravitational interactions should dynamically determine the structure of
space-time. One hopes that the final geometry is four-dimensional

Minkowski space x some compact six dimensional space. These six dimensions



will then be probed only at energies approaching the inverse

compactification radius. This radius is not yet calculable.

ITI Strings and Cosmology
If the true theory of all interactions is provided by the superstring
theory it is worthwhile to reexamine the standard cosmological model to see
what changes. In the usual approach the matter of the very early universe
is assumed to be a fixed number of species of almost free elementary
particles( the known quarks, leptons, gauge-bosons etec). String theories,

in contrast, predict a density of states
-a
ftm\ = m exy(bm\ €}

which rises exponentially for large m. What 1is the behavior of such a
System at the high temperatures involved in the early universe when the
massive modes of the string can be excited? To answer this question, one
can examine the canonical partition function
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where V is the nine dimensional volume. This gives 9
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where P(cL,XA is the incomplete Gamma function, T. = 1/b and n is an
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infrared mass cutoff below which the asymptotic density of states f(“\\ is

no longer valid. The canonical partition function diverges for T > To and



thus To seems to describe a maximum temperature for thermodynamic

10
equilibrium . The thermodynamic observables of interest may then be
2
calculated from Z; P = T%v InZ, < E > =T %T InZ, C = d/dT < E >.
For a ¢ 13/2 ( (D+3)/2 for space-time dimension D ) the pressure, energy

density and specific heat diverge as the temperature approaches T This

0

behavior is consistent with T0 being a maximum temperature of the system.

As energy 1is pumped into this system the exponentially rising number of
massive string modes are excited while the average energy per mode remains
constant. For a > 13/2 ( (D+3)/2 ), however, we see that the pressure and

energy density are constant as the temperature approaches T0 and for a >

15/2 ( (D+5)/2 ) the specific heat is also constant as T approaches T.. It

0’
seems that there is nothing to prevent the system from passing through T =

T0 as the energy 1s increased and yet the canonical ensemble does not

provide a description of the system for temperatures exceeding T The

0
most phenomenologically promising superstring theory 1is the heterotio
string theor'y11 which has'® a=9 and b = (2 V2 )TV’ where x’  is the
Regge slope parameter( the inverse of the string tension ). It thus falls
into the «category a > 13/2 . Calculating the mean-square energy
fluctuations we find ffii%i;g%slﬁh §> 1 when the energy density exceeds
a critical value of order one in Planck units. For large energy
fluctuations the canonical ensemble is no longer a good thermodynamic
description of the system and one should reexamine the system using the

more fundamental microcanonical ensemble. In this ensemble the total energy

E is fixed and one counts the number of microstates which yield a given

macrostate
- v om, = 9

Focusing now on the ( a = 9 ) heterotic string this gives
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reproducing the form of ?L“\\ . It can also be shown that the favored
thermodynamic configuration is for n-1 strings, where n 1is the most
probable number of strings in a gas of strings, to carry as little energy
as possible and for one string to carry the remaining energy8 9. The
condition of large energy fluctuations is equivalent to the condition E >>
nn. Tnus one string carries the majority of the energy and the equilibrium
system is highly inhémogeneous.

Looking further there is another striking feature of this gas of
superstrings. Given the microcanonical density of states jl(va\ we can

compute the microcanonical thermodynamib obserVables. The entropy S is
S= InNeg,vy = ~afne + bE T (6)

The temperature T is formally given by
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For positive energy E the temperature exceeds 1/b. The specific heat is

1/ ¥S y!
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The specific heat is negative! In the canonical ensemble the specific heat
is proportional to the mean-square energy fluctuation and 1is thus always
positive13 1 . The negative specific heat and the inapplicability of the
canonical partition function brings to mind the thermodynamics of a black
hole. A four-dimensional black hole of mass M is characterized by a
temperature T = 1/(81GM) and dM/dT is negative. A black hole (and the
massive string excitations) can never be in thermal equilibrium with an

infinite heat reservoir. The system 1is unstable to small temperature

fluctuations. A system with negative specific heat can, however, be In



equilibrium with another system of positive specific heat provided the

Let S and

specific heat is positive. 1.2
!

net

E1 5 denote the entropy and energy
H

of system 1 and 2 respectively. The total number of configurations for this

system is exp(S1+82). The most probable values of E1 and E2 will be those

wnich maximize S1+82 with the constnéint

This means

05, . 2,
JE, D€,
and
R 1
5, 38 ¢ o
dE’ £l

For a D(4)

to the area of the event horizon, which scales like RS D

that the total energy is fixed.

(9

(1 0)

space-time dimensional black hole the entropy S is proportional

"2 \here R, is the

Schwarzschild radius. Einstein's equations for a spherically symmetric

-3
matter distribution yield joir\ = ( ﬁfr(r)§ and
' o0 . . . .. o0
1'3 (v = v ¢ const . In the Newtonian approximation g =1+249
. . : D- . . -
where ¢ is the Newtonian potential which is - GDM/R 3 in D dimensions.
) folo) D-3 Y s .
Therefore g = 1 - 2GDM/R and the Schwarzscnild radius Rs =
1/(D- -2/D-
(ZGDM)‘/(D 3). Hence the entropy scales like MD 2/ 3. Equations (9) and
(10) then yield E] < [(D-3)/D] M. Thus a black hole can be in equilibrium
with radiation provided the radiation carries 1less than the fraction
(D-3/2D-3) of the total ~energy. This requires the total volume of the

system to be less than a critical volume. The corresponding results for the

string are that the temperature be
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The total energy in the massless excitations of the string (radiation) is

then constrained by

Q ‘1‘“0‘;

Er < (Ef)max = E "(Eslrintj\m‘m = € ¥ — (+2)
V=% Tmax

and the volume for equilibrium between the massive and massless excitations

is
(E9)max (13)

A\ -
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where ¢ is the ten-dimensional analogue of the Stefan-Boltzmann constant ;

9

0 = (8n5/3u65) {nb + (1-1/27 ) nf} and n, = n, = U032 for the massless

b £

modes of the heterotic string. For very large energy E, the minimum energy
in the massive string excitations is proportional to VrE— and most of the
energy can be carried by the radiation. The above results reduce in this
limit to TmaX ~ 1/b, (Er)max ~ E and V < E b10/o. Since superstring
theories yield Einstein gravity only in the low energy limit we do not know
if there is a singularity akin to the big bang predicted by such theories.
However we expect the massive string modes to be excited and they would be
in equilibrium with the massless modes for some temperature T between TO
and Tmax' The majority of the energy would probably be carried in radiation
and the universe may be described by a generalized Friedmann-Robertson-
1/2

Walker metric with the scale factor R growing like t . As the temperature

dropped and the volume increased there would come a time when the volume



exceeded the critical volume for equilibrium. The massive string modes
would have to evaporate entirely into radiation in a phase transition which

would take the system through the temperature T Since there are a

0°
tremendous number of massive modes this non-equilibrium process 1is 1likely
to generate a large entropy increase. The precise nature of this phase
transition and the resultant effect on phe evolution of the wuniverse are
not known. Perhaps this could pro&ide an alternative to the inflationary
universe's de-Sitter phase which also yields a large entropy increase and
thereby solves the horizon and flatness problems15. Since there is a
maximum temperature for thermal equilibrium of this system it may be that
the horizon problem is solved by causally-disconnected regions all being at
this temperature in the early universe. The large fluctuations inherent in
the massive string excitations may be diluted by the predominant radiation.
The physics of a gas of strings may alter wben string interactions are
included, particularly if_the coupling is strong, although we don't expect
the qualitative features of ﬁhe spectrum to change. A major source of
uncertainty in this discussion are the initial conditions in the early
universe.

An exciting alternative to the phasg transition discussed above is for
the universe to spontaneously compactify16. We have shown that above a
critical volume the massivé string excitations are unstable for a > 13/2.
If the geometry of space-time is Rll X S6, for example, each mode in ten
dimensions will become a tower of modes in four dimensions. There are thus
more modes in the effective four-dimensional theory. Suppose the density of
states is such that the effective four-dimensional "a" is lowered from 9 to
something 1less than 7/2 ( (4+3)/2 ). The four dimensional massive string

excitations could then exist in thermodynamic equilibrium alone and



thermodynamics would indicate that the system 1likes to dynamically
compactify. Preliminary investigations of this possibility indicate that
"a" is 1lowered by at most one, so this possibility has not yet been
realised in any string theory.

Consideration of string dynamics may also elucidate some of the other
problems of quantum gravity, such as what happens in the last stages of
black hole evaporation17. If the string tension is sufficiently 1less than
the Planck mass (of order Mp/100) then the entropy available to massive
string excitations exceeds that available to the Dblack hole18. An
evaporating black hole could increase 1its entropy by making a quantum
transition to a state corresponding to a massive string excitation.

The possibilities for novel cosmologies are immense in the new physics
which the superstring theories reveal at short distances. Furthermore the
evolution of the universe, and any relics of it, may very well provide the
only unique signatures of superstring theories since the massive modes
decoupie at low energies and-yield effective conventional quantum field

theories.

ACKNOWLEDGEMENT
We thank S.Frautschi, F.Gursey, J.Harvey, M.C.Marchetti, V.Moncrief,
L.Smolin, T.Tomaras and H.C.Tze for vaihable discussions on strings and
thermodynamics. This research was supported in part by the U.S. Department

of Energy under Contract Number DE-AC-02 76 ERO 3075.



10.

1.

12.

13.

14,

REFERENCES

J.H.Schwarz,. Phys.Reports 89,223(1982); M.B.Green,Surveys in High

Energy Physiecs,3,127(1983); L.Brink,Superstrings,CERN preprint

TH4006(1984).
P.Ramond, . Phys.Rev.D3,2415(1971) ;A.Neveu and J.H.Schwarz,

Nucl.Phys.B81,86(1971),Phys.Rev.D4,1109(4971).

J.Scherk and J.H.Schwarz,. Nucl.Phys.B81,118(1974).

S.L.Glashow, . Nuecl.Phys.22,579(1961);S.Weinberg,

Phys.Rev.Lett.19,1264(1967);A.Salam,in Elementary particle theory

,ed.N.Svarthoim (Almqvist and Wiksell, Stockholm,1968)p.367.

G.Arnison et al;. Phys.Lett.122B,103(1983), and 126B,398(1983), and

129B,273(1983). M.Banner et al; Phys.Lett.122B,476(1983); P.Bagnaia

et al;Phys.Lett.129B,130(1983).

E.Witten,. Phys.Lett.149B,351(1984).

M.B.Green and J.H.Schwarz,. Phys.Lett.E1U9,117(1984) and
CALT-68-1194. |

S.Frautschi,. Phys.Rev.D3,2821(1971).

R.Carlitz,. Phys.Rev.D5,3231(1972).

R.Hagedorn,. Nuovo Cimento  Suppl.3,147(1965).See also Cargese

Lectures in Physics, Vol.6 ed. E.Schatzman ( Gordon and Breach, New

York,1973) pp.643.

D.Gross, J.A.Harvey, E.Martinec and R.Rohm, . Phys. Rev.

Lett.54,502(1985) and Princeton Preprint ( January,1985).
Mark.J.Bowick and L.C.R.Wijewardhana,. Yale preprint YTP-85-04(1985).

D.Lynden-Bell and R.Wood, . Royal Astronomical Society of

London,Monthly Notices 138,495(1968).

W.Thirring,. Z.Physik.235,339(1970).

10



15.

16.

17.

18.

A.H.Guth,. Phys.Rev.D23,341(1981).

P.Candelas,

G.T.Horowitz, A.Strominger and E.Witten,.

Preprint NSF-ITP-84-170 (1984).

S.W.Hawking,

. Phys.Rev.D14,2640(1976).

Mark.J.Bowick, L.Smolin and L.C.R.Wijewardhana,.

preparation.

11

Santa Barbara

Yale preprint in



