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ABSTRACT

This essay describes a new approach to the problem of understanding sta-
tionary axisymmetric solutions of Einstein's vacuum equations, different from
the "Backlund transformation" approach which has recently been exteﬁsively
developed. It translates the problem into one of complex geometry, using the
machinery of twistor theory. This, in turn, leads to a procedure which, in

principle, generates all solutions. Some explicit examples are presented.
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§1. Introduction

In recent years, there has been much activity in the subject of stationary
axisymmetric vacuum space-times, or (more generally) vacuum solutions admitting
two Killing vectors. This began with the discovery by Geroch of a transformation
which enables one to generate many (he conjectured all) solutions out of a few
known ones [1l]. His conjecture has been at least partly verified [2]. This approach
treats the stationary axisymmetric vacuum equations as a "completely integrable"
system, analogous to equations that admit soliton solutions, and uses '"Backlund
transformations'” for constructing new solutions out of old [3].

The purpose of this essay is to describe a somewhat different approach,
which (roughly speaking) consists of translating the problem into one of complex
geometry. It is analogoué to Penrose's construction for vacuum spacés with self-
dual curvature tensor t4] and it leads to a procedure which enables one to con-
struct (at least in principle) all stationary axisymmetric vacuum solutions.
Space-times admitting two spacelike Killing vectors (such as cylindrically sym-—
metric spaces, or colliding plane waves) can be handled by using a slightly
different version of the procedure described here.

The relation between this construction and the Bidcklund-transformation
approach is as yet unclear, although such a relation presumably exists. The
hope is that the new approach described below will lead to a better understand-

ing of the whole problem.

§2. Stationary Axisymmetric Vacuum Spaces
Suppose we have a vacuum space-time admitting two commuting Killing vectors
a a . a ., . a .
£ and n”, with & timelike and n~ spacelike. Suppose further that the deter-
. a b a_ |2 s .
minant (& 5%)(nvnb) - (£ na) of the Killing vectors is not a constant. Then,

at least locally, the space-time metric can be put in the form

ds2 = DJP d}?P dyQ - Q(dpz + dzz), (1)
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where yl, yz, p and z are the space-time coordinates; 3/3y  and 9/9y~ are the
Killing vectors; @ = Q(p,z) » 0; and J is.a symmetric 2 x 2 matrix of real-valued
functions of p and z, with det J = -1. The only coordinate freedom left is
- 1 2
that of making constant SL(2,R) transformations on y and y .
., -1 1 2
For example, if @ = 1, J = diag(p ~, -p), ¥y =t and y = ¢, then we get
. . ) 2 2 2 2 2.2, . .
the Minkowski metric ds™ = dt” - dz” - dp~ - p d¢ in cylindrical polar coor-
dinates.

Einstein's vacuum equations R_a = 0, applied to the metric (1), give

b
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J = 0, 2
together With equations Of the form

leogS2== expression involving J, but not

BplogSZ expression involving J, but not .

These last two equations are straightforward to integrate once J is known.
Thus, the non-linear equation (2) for the matrix J is the crux of Einstein's
equations in this case. What boundary conditions J ought to satisfy is a
difficult question: in flat space-time; for example, J is singular 6n the
axis p = 0, even.though the space-time is smooth there.

The remarkable thing about equation (2) is that, although it arises from
a curved-space problem, it is in effect a flat - space equation. In fact, it
is a special case of an equation in Minkowski space-time, as we shall see in
§3. That section goes on to describe how one may characterize all solutions
of this more general equation in terms of complex geometry. The description
involves twistor theory and complex vector bundles, and the reader who is
unfamiliar with these subjectsmay skip to §4, which describes the application

of this theoretical framework to the problem of generating solutions of (2).



§4;" A Generalized Equation and Its Twistor Solution

Consider the following equation in Minkowski space-time:

A" B A -1
a” B 3 5. (T 7Y, ) =0, (3)

where uA and>BB’ are two fixed spinors with aA BA’ # 0. Here A,B,... and

-
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) f o . ; AKX
A ,B ,... are 2-component spinor indices [5], and the spinor version x of

the standard Minkowski coordinates t,x,y,z is given by

[ 007 o1 i i
X X t+ z x-1iy
s ‘ ’ = °
x10 Xll x + iy t-z
— - ‘e 4
The operator aAA‘ denotes partial differentiation with respect to XAA , and
J is a non-singular 2 x 2 matrix of complex-valued functions of x .
If in (3) we put aA = (1,0), BA = (0,1), and J = J(p,z) where
p2 = x2 +'y2, then we obtain equation (2); in other words, the solutions of

the flat-space equation (3) include all the solutions of the stationary
axisymmetric Einstein equations (2).

Notice that if J is a solution of (3), then so is

J7 = Wiv, (4)

where W = W(XAAaAf) and V = V(XAA BAJ are nonsingular matrices.

Solutions of (3) can be characterized by the following theorem, which
involves twistor theory (see [5] for details) and holomorphic vector bundles,

In the theorem, R denotes a region in complexified Minkowski space-time, and

A

R the corresponding region in twistor space PT. The points x € R correspond

A A

to complex projective lines x in R.



Theorem. There is a natural 1-1 correspondence between
(a) analytic solutions J of (3) on R, modulo the freedom Jw J° as in (4);
and
(b) holomorphic rank-2 vector bundles E over ﬁ, such that E restricted to ;
is trivial for all x € R.

Thus, solutions of (3), and hence also of (2), correspond to vector bundles.
One way of describing vector bundles is to specify a "patching matrix", and
the matrix F appearing in the next section is such a matrix. Its special form
reflects the fact that we want solutions of (2), rather than of the more general
equation (3).

It is worth remarking that the work described in this essay was inspired
by L. Witten's [6] observation that the stationary axisymmetric vacuum equations
can be thought of as a special case of the self-dual Yang-Mills equations, for

which a twistor construction exists [7].

84. Constructing Solutions

The general theorem of §3 leads to the following construction. Let F be

a matrix of the form

rf -0 |
F(v,%) =
g h
L -
such that det F = -1. Here k is an integer, Yy and 7 are complex variables,

and f,g,h are complex-analytic functions of Y (possibly with singularities),
satisfying the reality condition f(;) = f(y) and similarly for g and h.
Such an F determines a solution J of (2), as follows. Substitute

Y = Z—%pC-+3§pr'into F and "split'" it:

F(z - % ot + %2 T,0) = (p,2,0) H(p,z,2) 7, )



where H and H are nonsingular 2 x 2 matrices, with H analytic in g for |g|< 1
and H analytic for |g| 31 including ¢ = <. This is analogous to splitting a

function into "Taylor" and '"Laurent" parts.

Now put
” -1
J(p,z) = P H(p,z,0)H(p,2z,o) ~P, (6)

vhere P = diag (p_klz, pk/z). Then J is a real symmetric matrix with

det J = -1, and it is a solution of equation (2).

55. Examples and Discussion

The simplest examples correspond to F being diagonal, i.e. g = 0, 1In
this case, the splitting (5) is achieved by splitting log f into its Taylor
' . . -k -y k ¥
and Laurent parts, and we end up with J = diag (p e *, —p e'), where ¥(p,z)
is an axisymmetric solution of the 3-dimensional Laplace equation Vzw =0
given by
_ A | 1 R |
V(p,2z) = P(2miL) ~ q(z-%pT + HpL T,T)dC
with q = log (-f). These are, of course, just the Weyl solutions. . For example,
£(y) = -(y+m)/(y-m) gives the Schwarzschild solution.
Another example which involves an arbitrary function is given by k = 1,
g = e-p; f = —Y_l cosh p and h = 2yg, where p = p(Yy) is any analytic function.
This leads to the family of metrics discussed by Harrison [8].
The meaning of the integer k may be understood by studying the behavior
of J on the axis p = 0. Suppose that f, g and h are analytic in some neighbor-
hood of ¥ = 0, and also that £ # 0 at v = 0. Then one finds that Jll behaves
like ~p-—k f(z)—l as p > 0, and therefore the norm-squared of the timelike
s 1 A 1-k -1 _ . .
Killing vector 9/9y~ on the axis is -p f(z) °. So k = 1 gives space-times

which are "well-behaved" on the axis, whereas k # 1 gives solutions with

different axis behaviour.



A closer study of the k = 1 case reveals that
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where f = f(z) and b = %pfaz(f_lg(z)). So given a metric which is regular on
the axis, one can read off what f,g and h have to be (g is only determined up
to g+ g + Af where A is a constant, but this change in F does not alter I).
To put this another way, one can specify arbitrary data on the axis, and then
use the procedure to find the vacuum>solution determined by that data.

The only.difficult part of the construction procedure is that of finding
the matrices ﬁ,and H which split F. At present, there is no explicit formula
for H and H which works in general. But many large classes of metrics. can

be cqnstructed explicitly using this method, classes which are either well-
behaved on the axis (if k = 1) or not (if k # 1). And it follows from the theorem
in §3 that é;;_solutions can, at least in principle, be obtained.

Another problem is that of understanding the global geometric structure
of these spage—times. And here the present method may have the advantage over
the "B;cklund transformation" method (where the geometric aspect is somewhat
obscured), because it can be cast in a geometric form, as a construction involv-
ing vector bundles (cf. §3). This aspect has yet to be explored, but it
appears to be a promising one.
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