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Abstract
It is a fundamental feature of quantum field theory that correlations
between observable quantities occur over all spacetime regions. In
particular, in cosmological models with horizons, such correlations will be
present in regions which "lie outside of each other's horizon". Such
correlations may play an important role in processes occurring in the early

universe.



One of the most striking features of standard cosmological models in
general relativity is the presence of horizons:‘ There exist pairs of events p,
q whose pasts have vanishing intersection. In many arguments concerning
phenomena that may have occurred in the early universe, it is customary
to assume that if p and q "lie outside each other’'s horizon", then physical
processes at p must be independent of those at q, since no causal
communication of any kind is possible between p and q. Thus, in
particular, it is normally assumed that physical quantities measured at p
should be entirely uncorrelated with similar quantities measured at q.

A good example of the type of argument where it is assumed that
there do not exist any "correlations beyond the horizon" is the one used to
estimate production of monopoles in the early universe. (Similar
arguments also apply to production of strings and other "topological
defects".) Consider a field theory containing a Higgs scalar field coupled to
an SU(2)-Yang-Mills field, with the minimum of Higgs potential having
topology S2. In a standard Robertson-Walker cosmological rriodel, one
expects the state of the field in the very early universe to be locally in
thermal equilibrium at high temperature. However, as the temperature
drops below the scale set by the potential, the Higgs field at any given
point p should "settle into" a minimum of the potential at some "randomly
chosen” direction in field space, v, (i.e., at a direction depending
sensitively on initial conditions) on the spherical potential minimum
surface. At points spatially very nearby to p, one would expect the field to
"settle into” the potential minimum at a direction very close to v.

(Otherwise, the energy stored in the spatial derivatives of the field would



2

be very large; the thermalizing interactions should allow this to occur only
with negligible probability.) However, if q is outside of the horizon of p, it
is assumed that the direction w at q is completely uncorrelated with v.
This leads to a picture where the field breaks up into domains df horizon
size (or smaller) such that the field direction, v, is correlated within each
domain, but the different domains are uncorrelated. (Similar behavior is
predicted and observed to occur in condensed matter systems which are
cooled rapidly.) One then can estimate the frequency at which the relative
alignment of neighboring domains is such as to produce configurations
with a non-zero winding number, corresponding to the production of a
monopole.

The estimates of monopole production obtained by this argument
would appear to yield a highly reliable lower limit to monopole production,
since the only crucial ingredient in the analysis is the seemingly very
natural assumption that the field directions v and w at points p and q lying
outside each other’s horizons are uncorrelated. Since an unacceptably high
rate of monopole production is obtained, this gives rise to a serious
"monopole problem”, which, in order to solve, one must either abandon the
field theory model or appeal to mechanisms such as inflation.

In this essay, I wish to point out that the existence of “correlations
beyond the horizon” is a fundamental aspect of any quantum field theory.
The assumption made in the above argument that the field directions, v
and w, at p and q are strictly uncorrelated is incorrect. The crucial issue
with regard to this argument and others is not whether correlations

beyond the horizon exist -- they do -- but whether they are large enough
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to substantially alter any of the conclusions. I shall got argue here that
these correlations plausibly are large enough to solve the monopole
problem or substantially alter the conclusions of other previous arguments
which have explicitly or implicitly invoked the lack of correlations beyond
the horizon. Indeed, the simple model calculation which I shall describe
below yields rather small correlation effects. I also shall resist any
temptation to speculate upon possible implications of correlations beyond
the horizon for such issues as how to account for the observed
homogeneity and isotropy of the universe. The point I do wish to make is
that -- at the very least -- it is far from obvious, a priori, that the relevant
correlations beyond the horizon in a quantum field theory model will be
small, and the neglect of such correlations in analyzing any phenomenon
must be justified by quantitative estimates rather than by a simple appeal
to a lack of causal communication. Indeed, because of the fundamental and
universal nature of these correlations, it would be surprising if they did
not play some important role in our understanding of the nature of the
early universe.

Let O, and O, be two open spacetime regions. In quantum field
theory, for each of these regions we can construct local algebras of
observables A,, A, generated by field operators smeared with test
functions with support in O, and O, , respectively. Let A,e A, and A,e A,.

We say that the observable A, is correlated with observable A, in state ¥

if

VLA A, P> #* <VIA PP A 1Y (1)



The existence of correlations implies that the measured values of A, and
A, are not independent, i.e., a specification of the observed value of A, |
affects the probabilities that would be assigned for the possible observed i
values of A, . Correlations can occur even when O, and O, are spacelike | l
related (so that A, and A, commute) and, indeed, the presence of
correlations in this case underlies the Einstein-Podolsky-Rosen
phenomenon. However, the existence of correlations cannot be used to
communicate information between spacelike separated regions. '

The Reeh-Schleider theorem (see, e.g., [1]) asserts that for the
vacuum state ¥o -- and, more generally, for a dense set of all states [2] -=
of any quantum field theory satisfying the Wightman axioms (or other
s.imilar axioms [2]), given any open spacetime region O, the states obtained

by applying to ¥o observables in the local algebra, /A, associated with O

span a dense subspace of the Hilbert space of all states. It is an immediate

corollary of this theorem that given any two open regions, 0,,0, -- no

matter how small and/or widely separated -- there exist observables A,e
A, and A, €A, such that eq. (1) is satisfied. In other words, correlations
of at least some observables of a quantum field exist over all pairs of
spacetime regions.

A good concrete illustration of this completely general property of
quantum fields is given by the vacuum state of the free massless scalar
field in Minkowski spacetime. We have <0| ¢(x) | 0> = 0 for all x, but we

have
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1

<0] o(x,) ¢(x,) 10> = 297 o

(2)

where o denotes the squared geodesic distance between X, and X, . From
this equation it follows immediately that it always is possible to choose
test functions [, {, with supports arbitrarily near x, and x,, respectively,
such that eq. (1) holds, with A, = ¢(f,), A, = ¢(f;) . Indeed, considerable
further insight into the nature of these correlations inherent in the
Minkowski vacuum state can be obtained by expressing it in the "Rindler
representation” where one sees that the vacuum state corresponds to a
thermal state in the two "Rindler wedges”, with perfect correlation
between the particle content in the two wedges; see [3] for further
discussion.

The Reeh-Schlieder theorem has been proven only in the context of
flat spacetime quantum field theory, although some generalizations to
curved spacetime have been given [4]. However, the Hadamard condifion
on states [S] in linear quantum field theory in curved spacetime --
necessary for a state to have a nonsingular expected stress-energy --
requires a local singularity structure of the two-point function with leading
behavior as in eq. (2), so, at the very least, in linear field theory some
correlations over spacelike separations similar to those occurring in flat
spacetime case always must be present. Indeed, the strength and
generality of the Reeh-Schleider theorem in flat spacetime is such that it
seems inconceivable that similar correlations could fail to be present for
essentially all states and over essentially all regions in any curved

s'pacetime, including cosmological spacetimes with horizons. Thus, as
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already indicated above, the real issue is not whether such correlations are
present, but how large their effects plausibly might be in physical
processes.

In order to illustrate the existence of correlations beyond the
horizon, I now shall describe the results of a simple model calculation
involving a linear, conformally invariant scalar field in the conformal
vacuum state of a flat (k = 0) Robertson-Walker cosmological model with
horizons: details of the calculations will be given elsewhere [6]. Consider
the hypersurface X; at proper time t after the "big bang”, and let h denote
the horizon radius at that time. Thus, the intersection of X; with the
boundary the future of a point (or, more precisely, a TIF) on the big bang
singularity is a sphere of radius h. Let Py(x) be following “cone-shaped”

function on XZ; centered about point ye X,

1 - Ix-yl/h if Ix-yl<h
py(l) = ‘ (3)
0 if Ix-yl>h

where [x-yl is the distance between x and y on X;. (This particular
functional form of Py is chosen entirely for simplicity; the key feature is
that Py vanish when [x-yl > h.) Consider, now, the one-parameter family of

field configurations on X; of the form apy(x) where o is a constant. In the

conformal vacuum state, it is easily shown that within this family of field
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configurations, the most probable value of a is zero. Now, consider instead,

the one-parameter family of field configurations of the form
§(x) = Po(x) + aPy(x) (4)

where Po(x) is given by eq. (3) with y = 0. I pose the following question:
What is the most probable value, o, of ain this case? The sign and
magnitude (compared withl) of o, can be interpreted as giving a measure
of the "bias” on the expected results to be obtained by observers
measuring the field within a ball of radius h at y caused by an observation
of the field to be in configuration Py by observers in a ball of radius h
about the origin. Indeed, this question is closely analogous to the following
question in the monopole production analysis: What effect does the
formation of a horizon-sized domain in direction v at the origin have on
the probability distribution for the alignment of a domain formed aty. A
qualitatively similar "bias” occurring in that analysis would affect the
relative alignment probabilities assigned to different field domains,
thereby affecting the monopole production probabilities.

If Iyl > 2h, then the supports of Pg and Py on X; do not overlap, and if
lyl > 4h, then no event in the support of Py could have had causal contact
with any event in the support of Py. In the latter case, a complete absense
of correlations normally would be assumed, in which case the most
probable value of a would be taken to be a, = 0. However, in this model

we can calculate op for all y from the formula for the ground state
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wavefunctional in the conformal vacuum state. The results of an exact,

analytic calculation yield [6],

a, = {6+ [6A4- 10A2] InA + [-4A4 -10A3 + 201 + 20 + 6/A] In(A+1)
+ A4+ SA3 + 522 -104 - 20 -&/A] [n(A+2)
+ [-404 +10A3 - 201 + 20 - 6/Al InA-1]
+ [A4 - SA3 + SA2 +10A - 20 + 8/A] InlA-21}/[40 In2 - 10] (S)

where A = |yl/h. In particular, o, remains nonvanishing even when |yl > 4h.

For lyl> 2h, a, is positive but its magnitude is quite small. In
particular, for lyl = 2h, we have o, ~ 1072, and for |yl = 4h we have o, ~
1073. (Although it is not immediately apparent from this formula, it is not
difficult to show that o, decreases to zero as A"4 as A—» =.) Clearly, a
"biasing” of this magnitude would have negligible effect on quantitative
estimates of phenomena such as monopole production. However, the
model calculation is far too simple and special to provide a reliable
quantitative estimate of the correlations beyond the horizon occurring in a
nonlinear field theory, especially since it is far from clear what the initial
field correlation functions at the Planck time may have been in a more
realistic model. What the model calculation does reliably illustrate is that
such correlation effects always will be present at some level.

In summary, it is a fundamental and universal property of quantum
field theory that correlations between observable quantities occur over all
spacetime regions. | feel that it would be rather surprising if the existence
of correlations beyond the horizon did not play an important role in

accounting for some basic phenomena occurring in the early universe.
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