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Quantum Theory and Gravity
(Abstract)

Ryoyu Utiyama
Osaka University
Osaka, Japan

A new kind of approach to the unification of quantum
theory with general relativity is proposed. For this purpose
a local Lorentz-frame (or Vierbein systeﬁ) together with a
local Hilbert-space is attached to each world point in order
to establish a Lorentz-covariant quantum theory at the
neighbourhood of each world point. The connection between
state vectors at different world points is derived from the
connection of the corresponding Vierbeins at these points.
This connectibn enasbles one to derive covariant equations in
the macroscopic world from g-number equations in the microscopic

world.
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As Wigner(l) pointed out, there seems to be no essential
conflict between the quantum mechanical concepts and those
inherent in the special relativity. Accordingly if a physical
system is embedded in a gravitational field, one has to fix,
first of all, in the space-time a special local frame of
reference which locally eliminates the gravity at least in the
vicinity of its origin. After removal of gravity one can set
up a Hilbert-space following the conventional prescription. It
should be noted that the relativistic quantum theory thus obtained
allows us to have a definite interpretation only inside a small
region of the space-time around the origin of the above mentioned
frame of reference (let us call this a local Lorentz-frame or
L. L. Ff ) Accordingly, if one wents to describe a quantum
system which is located in the outside of the above mentioned
region, one has to employ another ,L,, ld. f? and another
Hilbert-space associated with this new [, L., }: .

In order to make our argument more concrete let us introduce
any system of coordinates }f" ( K=0, 1L, 2, 3) in

the space-time. This system of coordinates is supposed to be a
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macroscopic one and eonseQuently it is assumed that one can fix
this system without suffering from the quantum limitations of
measurements. Let it be called the world coordinate-system.

Next let us define a neighbourhood U (P) of a world-point
;D as follows; (J(P) is a small region of space-time surrounding
the point P » in which one is able to eliminate the effect of
gravity by choosing a skilful L L. F . Now suppose that
the ‘,/hole space-time is divided into a great number of small
neighbourhoods. To each neighbourhood, say (3 at % , an

_L.. l_.. F: L( f).ie attached respectively in order to remove
the gravity from ¢0(3) . Finally let a Hilbert-space “6( 3)
be defined at each Q)G) in terms of the quantities defined in
reference to L(I) . Here it must be noted that if Z.. (})
is subjected to a local Lorentz-transformation, the basic vectors
of né(} ) should be also transformed by a corresponding
unitary operator.

According to the line of thought so far stated, a state
vector ’Llf belonging to 6(;)depends upon the coordinate } in
addition to the other quantum variables. In the conventional
theory, because of the flatness of the space-time, state vectors
at different points and representing a same physical state are
put equal to each other, namely, paralled to each other. Thus
in such a caseqjl_f is essentially independent of } and we need

not distinguish Hilbert-spacgs at different points from others.
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On the contrary, if the world is curved, the Vierbein or L. L./
at 3+ d} is not same as that at 3 o The Vier bein }’Lq/“(f,)
(Latin indices represent components with respect to L L. F:
and Greek ones the components of world tensors, both run from

0 to 3 )at § is related with h o/ (3t4}) vy
= d3’ Ayay (O NS> (/)(z)

This relation shows that }L(}+d 3 ) differs from the vector

L\_// (;""(Z) prouduced by a parallel transport of h( I)
along some curve and that a further infinitesimal Lorentz-
tragsformation of /4.(3) is necessary for getting the correct

h(3+43) . 1f AQ) vanishes around the point § , h (3+3)
is identical with 1’!.” (3+ 43). Consequently a state vector
%(}143) répresenting a state O< can be chosen to be
identical or parallel with a state vector 'SP&(?) respresenting
the same state. However, if/(}) does not vanish, 'Zg( (5+ 4&3‘)
differs from QP;(( 3 ) by a Lorentz-transformation which corresponds
to the right-hand side of (1). |

Therefore we have a relation

Y, 61 8) = (D = F Apar O f"M“%a‘) (2)

which shows a Lorentz-transformation of "-I—; with an infinitesimal
ab _ ba
parameter AI““" (). 43" . Here M M is a total
-3



angular momentum operator defined inside the neighbourhood

w (D . M at CO(P) can be regarded as commutable with
Mat W (@) when () is distant from P . It may be
reasonable to assume futher that JMJ defined at two neighbouring
points are almost identical with each other because of the
continuoue distribution of physical systems.

The equation (2) is in general not integrable. Accordingly
in order to attach a Hilbut-space to each ,Zp. LE or each
neighbourhocd, let us consider a bundle of curves emanating
from some fixed point () and covering the whole world. If the
A poab (3) 1= known everywhere, we can fix a state vector at
any point S by integrating (2) along a particular curve passing
through the point 3 with the given initial condition 'SL:(( O) .

. Now our view-point is that, in each neighbourhood the
conventional Lorentz—-covariant quantum theory is valid and the
effect of gravity is unnecessary for the description of the
physical phenomena in one microscopic system. On the other hand
when some data at some neighbourhood are to be compared with
other data at another distant point, one has to take into account
the effect of gravity. This effect is correctly involved in
the claassical equations of general relativity. Therefore one
has to show how the classical general covariant equations in
the macroscopic world can be derived from the quantum equations

in the microscopic world.

Consider two L.L.ES 2 A.a/*(}) y and }La/*(}"'dg at
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two adjacent points ?@) and @ [}+4}> » respectively.
The local coordinate of the point (Q viewed from the L.L.F oat

? 15 glven by
« A
= A/u (}). a/}i

Let us consider a vector operator Vk(%) which is defined
with respect to the / Z, F at ? Since the point Q can
be regurded as a point inside (W(P) and mrthermore in W (pP)
the space is free from gravity, a vector / ( @), which is

a parallel transport of Vk( P) » is given by

k ,
Viw=Uw . (®
The classical counterpart of Vkat the point P is,
according to Ehrenfest,

VD = b/ ('% OV )

In the same way, we have at Q

V///‘* (3043)= b JGrld): (?jg( (3+43) .Mk( %)Y (;w@ 0

Inserting (2) and (3) into (4) and neglécting terms of higher

orders in o(f » we have

V() = VI + J;vP;k ANAOR
—ahF 'Auab(%[l‘/ﬁb 174 x=e;£{%[{((}))}.
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[M®, M= {17 M" + 75 pg
— 74:,\41”__ "Z"TM”} )

[M*, V)= {1 Vie- ybe V) L@

where 'z 18 the Minkowskian metric. Accordingly % ( 3 4o )p
leads to

'\{//*(3{45) = V/“(?) + “
+ 4}"{/4_5}9(3‘)' %—é—’é + Av‘q{, /'L‘V‘}Vf(-?

or

VA =VFQ - T VTG @)

owing to (1) and the relation Ar,ql,_—:—A/A,bQ . (7 1s
nothing but the definition of the well-known parallel tramport
of a vector Vl"‘( 3)- This result implies that the ordinary

derivative [BVY%XI ] x=o OF @ Vector operator in

the microscopic space w(p) corresponds to the covariant

i
derivative of a C -number world vector S ,)V/“ ( }'):- D'V/a}” +
-+ r;l“; (3) Vf ( j') . in the macroscopic world. Thus we

arrive at the conclusion that any Lorentz-covariant Z -number
equation in the miéroecopic space is translated to a general

covariant C -number equation in the macroscopic world by
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taking the expectation value of the former.
The equation (2) or its equivalent

; ab
R (D = 2Yh5k = 4 Auas Q- M= F D=0 @)
is covariant under the following two kinds of transformations

i) general aenedi®&idke transformation o;( Cooy dima le
| (e ;ﬁ- F£4(3)
A, ab == Apear () = 23550 Avas Y

Y(3) - Y3d=ED

ii) generalized Lorentz transformation

) = Kap0)= .02+ €IS

/
A,qu (3) — Aﬁ‘q_‘,(f): Aﬂ,ql, + &k, A,«.kb
+ E R, Au.ak + D&/}ﬂ—
Y - (Elf(;) {/#-—- Eep (1) Mﬂb} L

glk-g MQA.M}Q"

where qu = éb a
In spite of these favourable properties, eq. (8) is not
integrable as shown by



. -
(oo o) POV
ab n-M* Q:(ICD)

—
==

’

.

where

f/l,)' ah = 3/4/4;441,- ‘ap A/,(,qb - Aﬂ.‘lk/’v, kb"/]m/e',%’/,’ kb

We have employed the commutation relation (5) in deriving the
above relation. It may be easily noticed that our Iy (AP ab
is related with the Riemann-tensor R in the following way(z)

/3»\11, ab =-— /laf' /lbo: ﬁfﬂ/ﬂ}

Therefore if the world is not flat, a state vector ’g’ at }
is not only a function of k but depends also upon the curve
c along which ’{(f was integrated.
Let us consider two curves C; and (; both issuing from
a definite point P and intersecting each other at another
point O . Let a state vector @0)13 transferred following
the equation (8) along the curves C and C respectively.

Then we have two state vectors at (@ , i.e., w 4’.(@ C)
and Qp'(@? C’) , the difference of these is given

by

A’l}"(@)s Y@, c)—Yd(a o)
=% |4t Bk MEBR) op)
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where 23 is a very narrow two-dimensional surface hemmed by

the curves C} and (o . The right-hand side of (9) depends
not only upon the curves 67 and CZ but also upon the surface é; .
This fact contradicts the left-hand side of (9) which shows @}f
depending only upon the curve. This contradiction, however,

can be resolved appréximately by virtue of Bianchi's identity
when the gravitational field is so weak that the linear
approximation is valid.

On the contrary when the gravitational field is not weak,
it seems necessary to modify the equation of gravitational field
in order to get rid of the above mentioned difficulty. 1In
this connection it is very interesting to recall the fact that
the phase 0of a state vector is undetermined. One is able to
follow, in the present case, Dirac's (3) line of thought
deieloped in his theory of magnetic single pole.where the inde-
terminacy of phase was effectively employed. This kind of
argument together with a suitable change of field equations may
lead to a quantization of the source of A -field.
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