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Abstract

The two-dimensional black hole provides a theoretical laboratory in which the quan-
tum nature of black holes may be probed without the complications of four-dimensional
dynamics. It is therefore natural to ask, what have we learned from this model? Much
recent work has focused on the semi-classical limit where the black hole is similar to
the Schwarzschild solution. However, in this essay, I demonstrate that the ezact two-
dimensional quantum black hole is non-singular. Instead the singularity is replaced by a
surface of time reflection symmetry in an extended space-time. The maximally extended
space-time thus consists of an infinite sequence of asymptotically flat regions connected
by timelike wormholes, rather analogous to the Reissner—Nordstréom space-time. The im-
plications of this to the apparent loss of quantum information arising from black hole

evaporation are also briefly discussed.



Black holes are manifestations of General Relativity infringing upon the realm of the
Quantum—and without the harmonious marriage of these two diverging physical descrip-
tions of nature, our understanding of black holes will necessarily be incomplete. One
could, for instance, ponder the true nature of the black hole singularity—a point which
signals the effective breakdown of classical physics. History has taught us to expect that
this “blemish” of General Relativity would be “washed away” by quantum effects. What
would replace it however still remains a mystery.

Another unanswered question concerns the apparent loss of quantum information
arising from the process of black hole evaporation [1,2]. The semi-classical analysis of
Hawking indicates that the emitted radiation is thermal, and does not record any infor-
mation about the quantum states of the matter that formed the black hole. So when the
black hole disappears completely, what happens to this missing information [3]? Is it lost
forever (together with a cherished principle of quantum mechanics), or does it reappear in
a way only apparent in an exact quantum treatment of the problem?

A deeper understanding of quantum effects in General Relativity is clearly needed to
shed light on these perplexing issues, but a consistent quantum theory of gravity still eludes
us. One promising candidate is string theory. In the past few years, our understanding
of string theory has seen important advances. In particular, it has been realized that
consistent string theories may be constructed in target space dimensions much lower than
the critical dimension, and that these target spaces admit curved background solutions.
Thus a unique opportunity has opened up for us to investigate what string theory can
reveal of quantum gravity.

The prototype of such a solution of string theory is a black hole metric in two di-
mensions [4,5], which has been the focus of much recent attention. This model provides a
setting which is non-trivial enough to accommodate the quantum behavior of black holes,
yet simple enough to be fruitfully addressed using the powerful methods of conformal

field theory. While some may argue against the unphysical nature of such models, it is
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hoped that they would nevertheless provide some intuition as to what might be expected of
four-dimensional quantum black holes. After all, one has to learn to walk before running.

In this essay, I shall reflect on, from my personal viewpoint, some of the lessons that
we have learned from the two-dimensional black hole. In particular, I shall describe what
this model tells us about the fate of the black hole singularity; and briefly discuss a possible
resolution to the information-loss puzzle arising from this.

The two-dimensional target space background is specified by the metric; and a dy-
namical conformal factor of the geometry, ¢, known as the dilaton. Because of the absence
of transverse string oscillations in a single spatial dimension, a string is dynamically re-
stricted to its tachyonic ground state, and its classical motion is completely specified by its
center-of-mass coordinates. In this case, the tachyon is actually massless, and it resembles
a point particle.

The dynamics of strings in a curved space-time is governed by conformal invariance
of the world sheet, which is imposed by the vanishing of the f-functions of the metric,
dilaton and tachyon [6]. However, these equations are only known perturbatively in the
inverse string tension o', and so conformal invariance is only imposed order by order. The
two-dimensional black hole of ref. [4] was found by setting the tachyon to zero and solving
the lowest order S-functions, which have the form of Einstein’s equations coupled to a
massless scalar field ¢.

The resulting black hole solution may be written as [7]

dz?
4(z2 -1)°

z—1

— = d#
z+1 +

ds? = ¢=¢o+Inlz+1], (1)

which is clearly seen to be asymptotically flat for x — Fo00. There is an event horizon
at spatial coordinate z = +1, and a curvature singularity at z = —1. The black hole
space-time exterior to the horizon may be parametrized by £ = cosh2r, in which case
the metric reduces to the more familiar form [5] ds? = — tanh® r d¢2 + dr?. I shall denote

this region by I. The black hole space-time interior to the horizon will be called II, and
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FIG. 1. Causal structure of the two-dimensional semi-classical black hole. Re-
gions I, I' are asymptotically flat space-times exterior to the black hole and
white hole horizons. Regions II, II' are inside the horizons, while IV, IV’ are
asymptotically flat regions each containing a naked singularity. The curvature

singularities are marked by the double lines.

may be parametrized by z = cos2r. The causal structure of these two regions and their
analytic continuation to regions I' and II' is sketched in Fig. 1. It is identical to that of
the four-dimensional Schwarzschild black hole.

The exterior black hole space-time can be transformed by string duality into a new
region with metric ds? = —coth®rdt? + dr?2. It is an asymptotically flat space-time
exposed to a naked singularity at r = 0. This region, which will be referred to as IV, is
also described by (1) for the parametrization £ = — cosh 2r. Regions I, II and IV thus
patch together to form the extended two-dimensional black hole space-time given by (1),
whose causal structure is shown in Fig. 1.

Witten has found an exact conformal field theory description of this black hole [5],

which ensures that conformal invariance is obeyed non-perturbatively to all orders in k, the
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Kaé-Moody level. This description is in the form of a Wess—Zumino—Witten model based
on the group SL(2,IR) gauged by SO(1,1), which maps to a non-compact 1+ 1-dimensional
gravitational background in which strings propagate. In the semi-classical approximation
k — oo, the above black hole solution is recovered. However, k = 9/4 for a bosonic string
background, so 1/k is quite large and corrections due to this should not be neglected.

The effective space-time background for general k is [8,7]

ds? = 2(k — 2) [—ﬂ(z)dt2+4(wd2—xi1)] . d=do+1ln %‘ . (20)
where
B(z) = (24:1 —%>_1. (2b)

It reduces to (1) for k — oo (up to an overall scale factor), and is believed to be an exact
string background to all orders in «'. Indeed, (2) has been checked to solve the S-function
equations up to the four loop level [9].

The exact geometry describes the exterior of a black hole for z > +1, with an horizon
at x = +1. This coincides with region I of the £ — oo limit. Region II will again denote
the black hole interior, where —1 < z < +1, except that now £ = —1 is a coordinate
singularity. The curvature singularity is located at z. = —(k + 2)/(k — 2) < —1. The
regions for which z. < ¢ < —1 and = < z. will be called III and IV respectively. Region
IV is an asymptotically flat space-time containing a naked singularity, as in the previous
case. Region III is however a new region not present in Fig. 1 [10].

Observe that region III is an area of Fuclidean signature embedded in an otherwise
Lorentzian space-time. This fictitious region is the outcome of choosing the unphysically
extended spatial coordinate z. By transforming to suitable coordinates [10], it can be
shown that £ = —1 actually corresponds to a perfectly regular surface of time reflection
symmetry. Two copies of region II are glued together at this surface to form a wormhole
bridging asymptotically flat space-times isometric to region I. The final result is an in-

finite chain of black hole space-times I connected by time-like wormholes II, whose causal
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FIG. 2. Causal structure of the maximally extended exact black hole geometry.
This consists of an infinite sequence of asymptotically flat regions I linked by

wormholes II. The dashed lines represent £ = —1 surfaces.

structure is shown in Fig. 2 [10]. It is reminiscent of the Reissner-Nordstrém black hole
in four-dimensions, except that there are no singularities present in this case. There is
also a disjoint naked singularity space-time IV, whose existence is inferred by duality but
is otherwise presumed unphysical.

The reason for the appearance of a wormhole rather than a curvature singularity may

be traced down to the negative curvature of region II [10]. The non-attractive character of
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gravity there prevents a singularity from forming, but supports a wormhole. Note that this
feature strictly results from the inclusion of all the higher-order quantum corrections, which
happily reinforces the general belief that quantum effects dominate near the singularity of
the semi-classical approximation.

“Singularities are repositories for our ignorance, and appear to provide promising
scapegoats for any conceptual problems we encounter with black holes,” to quote Wilczek
[11]. That was the traditional réle of these otherwise unwanted objects. But now that the
exact two-dimensional black hole has been found to be non-singular, it is time to readdress
these puzzles, like that of information loss Wilczek was referring to.

The study of black hole evaporation within the context of the two-dimensional semi-
classical black hole was pioneered by Callan, Giddings, Harvey and Strominger [12], who
investigated the formation and subsequent evaporation of the black hole using a semi-
classical analysis which includes the effects of gravitational back reaction. While soluble
to a remarkable extent, the approximations upon which this model is based prevent it from
convincingly probing the real mysteries surrounding black holes. The next logical step is
to study the formation and evaporation of the exact black hole. Ideally, one would like to
find a conformal field theory ezactly representing this process, probably by perturbing the
conformal field theory associated with the static black hole background (2) to one which
has a non-trivial propagating tachyon. However, this seems like a very difficult task at
present.

A reasonable approximation is to study the scattering of a tachyon in this fixed back-
ground, which would be valid for sufficiently large black holes where the back reaction
of the tachyon on the metric may be neglected. While this approximation will not be
able to address the endpoint of an evaporating black hole, it still does strongly suggest a
possible explanation for the loss of information. It is clear from the exact geometry of the
two-dimensional black hole that infalling matter tunnels to another universe. It cannot

be recovered without violating causality. However, no information is actually lost—it is
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merely transferred from one universe to another. Quantum theory is thus well-defined in
the larger sense which includes all the universes—the “multiverse” [3].

The idea that a black hole opens the gates to another universe is not new—a closed
baby universe scenario resembling a bag of gold was proposed some years ago by Wheeler
[13] and by Dyson [14]. However, it would appear that this is the first time a concrete
model substantiating this picture has been found, apart from a few differences. In the
model I have presented here, the baby universe is asymptotically flat and isometric to the
parent universe. And there is no preventing it from having offspring universes of its own.
Every time matter collapses to form a black hole, it induces a “big bang” by which a new
universe is created from this white hole.

Ultimately, we are interested in four-dimensional black holes, and it would be very
pleasing if the two-dimensional example described in this essay carried over directly. To
check this, we have to represent the known black hole solutions of General Relativity within
a string framework, and look for any qualitative differences near the singularities.

If we are lucky, we might even be able to visit other universes in the foreseeable future!
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