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Summary. A new method to formulate asymptotic conditions for the
gravitational fileld of 1solated systems 1is vresented. It is based
on a boundary attached to spacetime, which is determined by the con-
formal structure intrinsically. The boundary is a generalilsation
of §7, defined by Penrose, and constiructed using a certain bundle
over spacetime.

Application to asymptotically simple spacetimes shows that
the boundary contains not only # but further points, corresponding
I°, 17, 1" in Minkowski space.

Sufficient conditions for I° to be a point are given. In this
case one gets the Poincaié group naturally as an asymptotic symme-
try group.

Further issues, where this new boundary may be quite useful,

are discussed.



A New Approach to Isolated Systems in General Relativity.

The 1dea of isclated systems is intimately related to a concept
of a symptotic flatness. Bounded sources should determine a space-
time which becomes more and more like Minkowski space fair away from

the sowrces.

Essentlally two notions of asymptotic flatness are used in General

Relativity.

In the context of gravitational radiation Sachs and Bondi formu-
lated asymptotic conditions along outgoing null hypersurfaces.
These conditions were fuirther developed and recast by Penrose
into the definition of "future null infinity" called éz. Spacetimes
which possesng.are called "weakly asymptotically simple'" and be-
have in a precilsely defined sense like Minkowskl space along null

geodesics which terminate at .

For static and stationary solutions a gquite different asymptotic
flatness condition has proved to be useful. One demands that a
spacelike hypersurface behaves more and more like a 3-plane in
Minkowskl space. Gerod developed this further in defining spacelike
infinity also for non-stationary spacetimes using similairr technics

as Penrose.

Up to now no relatiocn between the two approaches is known.

In a recent paper I developed a generalisation of the b-boundary

construction applicable to the conformal and projective structure



of spacetime. The conformal boundary one gets seems to be very
useful to formulate asymptotic flatness conditions in a intrinsic

and natural way.

First the construction of the conformal boundary will be described
briefly, thensome new results will be reported and finally some
important problems are mentioned, which can be tackled fiom a new

point of view,

A conformal structure can be defined as the reduction P of the
frrame bundle consisting of all frames which are orthonormal in

any metric in the conformal class. The collection of connections,
defined by the metrlics 1in the conformal class,define a further re-
duction P1 of the firame bundle of P. On the bundle P1 there
exists a natural parallelisation determined by the conformal struc-
turg,which 1s used to define a positive definite metric on Pl.

The parallellisation is determined as follows: any connection of

a metric in the conformal class defines a section in Pi. Sections
passing through the same point with different tangent directions
have different Ricci tensors. Undeir all subspaces of the tangent
space one gets this way, there is a unique one determined by the

condition that the Riceci tensor vanishes. This complement to the

tangent space of the fibiedefines the parallellisation.

Constructing the Cauchy completion one defines a boundary of Pl
and vlia the projection one gets a boundary of spacetime, intrinsi-
cally defined by its conformal structure. Boundary points can be
characterised in the following way: Take a curve x(X)inextensible

. ! . . . ..
in V . Determine a connection in the conformal class whose Riccil



tensolrr vanishes along x(X). (This is always possible). If the
generalised affine length given by thils connection is finite,

then the curve defines a point in the boundary.

For Minkowskl space the conformal boundary turns out to be

+ - - +
6Z=<9'Lh7 together with the three points I , IO, I . Hence
one gets precisely the boundary attached to Minkowski space

by conformal imbedding into the LEinstein unilverse.

!
The projective stiructure of spacetime defines a boundary anv*
in a quite analogous way as desciribed for the conformal strucure

above.

For Minkowskl space the boundary coincides with the one, one gets
by the natural projective imbedding of Minkowski space into a
L-sphere. This agrees with the definition of "future projective
infinity" defined by Eardley and Sachs recently. The interesting
point 1s that timelike geodesics which in the conformal boundary
all terminate at one point IO, terminate in the projective case

on a hypersurface.

Therefore one might conjecture that generally the projective boundary
will be useful to describe the behaviour of matfter in the distant

future.

Constructing the conformal boundary BCVM of a weakly asymptotically
simple spacetime one finds that ¥ is contained in BCV“. More in-

teresting however 1s that any generator of(g—gets a future and



past endpolnt in BCVM! These sets of boundary points are denoted
by I, Ioﬁg_), Io(yi), Tt Tt is, however, not true that the end-
points are identified always to form just three points as for Min-
kowskl space. Therefore weakly asymptotically simple spacetimes can

be naturally classified according to theilr structure of 1°.

The class which reflects most of the asymptotic pioperties of
Minkowskl space 1is the one in which 1° is one point. This is for

example the case for the Schwarzschild solution.

In general I have so far only been able to find sufficient condi-
tions for the structure of k¢+ which imply that IOQ§+) is a point.
The conditions are essentially that the new s function tends to
zero there. This indicates a relation between the structure of
IO(E*) and the amount of radiation produced by the source in the
infinite past/which is physically quite plausible. HNecessary and
sufficient conditions for Io(§+) to be a point and their relation
to the outgoing radiation field have to be found by further in-

vestigations.

Suppose that Io(§$) is a point. Then one can show that there is

. . . . - +
a uniquely defined action of the Poincaré giroup on §F !

In the case of Minkowski space one can find the Poincaré group in
the Bondi Metzner Sachs group as the subgroup of those transforma-
tions whilch are regular at the point T°, In the general case, as

O, 7ty . . . . .
long as I () is a point, even a singular one, there remains



sufficient regularity along kg+ to single the Polncare group

out of the BMS grroup. This result is of major importance, be-
cause it implies the possibilify to define energy-momentum and
angular momentum. The action of the Poincaré group on \§+ de-
fines a collection of canonical slices of ' uniguely up to
Poincaré transformations. Using the expressions of Tambarino

and Winicour and the canonical slices one can define energy-
momentum, angulalr momentum and calculate the change of these
quantities in the radiation process. Because of the supertransla-
tion freedom 1n the Bondl Metzner Sachs group i1t was up To now

not possible to define angular momentum.

There is a further aspect under which these canonical slices

might prove useful. In Newmans approach to equations of motions
one majoir problem is that there is too nuch fireedom in choosing
slices on .§+. Using the canonical slices one can resolve this

difficulcy .

The canonical slices also define a preferred class of coordinate
+ . . . . . +
systems near " which are uniquely defined by the slicing of ¢ .
These coordinate systems can be used to linearilse Einstelns equa-
. §+m.
tion near . This way one gets a much smaller gauge group as

usual.

1)
This point was 1tealised by Martin Walker.



These are the results obtained so far. Let us now turn to
further problems which can be dealt with using the conformal

boundary.

Cauchy data on a spacelike hypersurface determine uniquely

a spacetime. Hence the data specify also the conformal boundary.
Its a formidable task to find conditions on the data which imply
the existence of ¥ and a certain structure of 1°. A simpler
question is to ask for conditions on the asymptotic behawiour

of the data which guarantee the existence of a "piece of ¢ "

and a certain structure of IO. The conformal boundary will ceyr-
tainly be a useful tool in this context and hopefully 1ts appli-
cation will bring some insight into the relation between null and

spacelike asymptotic flatness.

Related to this is the problem of incoming radiation on § . For
a truly isolated system the radiation field on J should vanish.
It is’however, completely unclear whether non-stationary solution

satlisfying this condition exists at all!

+ -
The structure of I° which relates in some sense Y and § may
give first indications. Somehow 1t seems puzzling that a change
in the sign of the second fundamental foxrm of the initial surface

should shift the radiation field from \§+ to §.

The results obtained so far and the whole range of problems
which can be reconsidered from a new point of view, show that

the conformal boundary 1s a useful concept in General Relativity.



Hopefully it will lead to further insight into the structure

of Einstein's theory of gravitation.
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