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Abstract

The structure equations for & rotating massive star in the
Feneral theory of relativity are presented and solved. The
dynamical equations are then considered and the fundamental radial
mode of oscillation is calculated from a variational principle. This
is found to be zero, implying transition from stability to instability
when

, 3 2.3
2GM = 1.3 (Mo) + 0.015 Q°R

R02 GM

where Q@ 1is the angular velocity and R the radius of a star of mass M.
This implies that stars less than 2 x lOTMO can reach the temperatures
required to burn hydrogen and that more massive stars live for some

2 x th years before becoming unstable.
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¢ The suggestion by Hoyle and Fowlerl that stars with masses of
107 - 10lo M0 may provide the energy for radio sources, and the subsequent
discovery of quasars has stimulated considersble interest in the structure

3 using a binding energy argument showed

of very massive stars.2 Iben
that within the framework of general relativity.a spherical massive
star becomes unstable long before it has contracted to the stage at
vhich nuclear reactions become important. A similar conclusion was
obtained by Chandrasekha.rh using a detailed stability analysis on
the spherically symmetric relativistic equations and calculating the
relaxation oscillations from a variational principle. Similar results
have been obtained by Fowlers using a virial theorem approach.

It was shown by Roxburgh , using a simple virial theorem approach,
that rotation had a considerable stabilizing effect, changing the radius
at which instability occurred by a very large factor. 1In view of the :

large change produced by rotation it is desirable to have a proper

stability analysis of rotating massive stars in general relativity, since .

in the Newtonian theory it is known that the virial theorem gives results
T

that may be wrong by a factor of four. This problem is considered here.

The general relativistic equations have been given by Misner and
Sharp9 and by Chandrasekharlo in a weak field approximation. This is
sufficient for our purpose. If we confine our attention to slow
rdation and integrate the equations over latitude, so leaving purely
radial variables, the equations that govern the structure of the rotating

massive star can be expressed as
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Equation 4 %s the adiabatic condition which is used since the star is in
convective équilibrium. 1,5.

With B<< 1 these equations are the same as those of the polytrope ~
n = 3, and the equations are readily integrated. B is then given by

Eddington's 12 equation which approximates for massive stars to
1

M \° :
8= 8.6 ( _9_) (6)
M

By introducing suitable dimensionless variables equations (1) to (5) reduce

to

46 =(1+43q0)) lag -m [1+ _qg + 8m-q£o"] (7)
ag 3 g:e 1+3q0 €
am = £ & (1+3q0) (8)
dt |

where
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the former measures the degree of rotation, the second the effects of

general relativity. These equations are readily solved subject to the

boundary conditions

A

o=1,m=0(E3) at &= 0 (10) ‘

To calculate the stability against radial oscillations we
introduce an adiabatic displacement A4r =n eimt into general,
relativistic equations and linearise in the perturbations. After
some elimination this giveé an eigenvalue equation to determine w2 and n,
It can readily be shown that the problem is self adjoint and a variational

principle derived to determine wa. This gives
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B = e—hqo
e q , 5
= (12)
Engpc :
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To calculate 22 we took a trial function

. 2 3
nE E+A &+, & (13)

where Al and A2 are parameters to be varied so as to obtain the minimum
value of £2 . We initially set A2 = 0 and varied Al so as to minimize
22; with this value of Al’ A2 was then varied to obtain an improved value
of 22. The accuracy of our solution was estimated by applying the
principle to the non relativistic case, and compafing with ﬁhe results
of Cowling and NewingT. Our trial function gave considerably better results
than the linear trial function.

With T given by equation (12) and B by equation (6) we evaluated I 2

for M/MO ='106, 107, 108, 109, 10lO for different values of q and & .,

Instability was found to set in when
Va

y _
q. = 0.425 ( 2 GM ) = 0.55( 0)+ 0.56
1 e? M

B

Since the massive object is like a polytrope of index 3, the maximum possible
value of @ is 3.95 x 10—3'¥§ corresponding to Eigi ~ o.4, since the ratio
of central density to mean density in a polytrg%e n = 3 is approximately
60. With M/MO = 1010

instability'sets in is decreased by a factor of 400O. Even small

and @ at this maximum value, the radius at which

values of @ can have a considerable effect. For sufficiently large

masses and maximum o, the star becomes unstable at a radius

RI = 193 Rg ’

where Rg is the Schwarzschild radius 2 GM/ca.

This should be compared to the results of the simple virial theorem
1° 250 Rg « The detailed analysis

therefore confirms the general c%?clusions of the virial theorem analysis.

analysis of Roxburgh6 which gave R

Using results established earlier we find that a contracting rapidly



rotating massive star can then reach the hydrogen burning temperature
T

Mo.
star contracts drawing on its internal energy until it reaches the
= 193 Rg which takes some 1.6 x th years.

if its mass is less than 2 x 10 For more massive objects the

instability radius RI
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