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Summary

The Eotvos, Dicke, and Braginski experiments do not rule out
the recent suggestion that the weak equivalence principle (WEP)
might be violated at intermediate ranges (10! m < r ¢ 104 m).
I briefly discuss the problems inherent to Eotvos-type apparatus
in searches for WEP-violating forces ("hyperforces") between

laboratory masses, and suggest an alternative detector free of

such problems. The proposed detector is driven by a
"hyperforce" torque at the rotational frequency. If the
detector is tuned to this frequency, the signal, enhanced by

resonance, may be detected synchronously. I derive the response
equations for the detector, and discuss how spurious responses

due to gravity torques may be suppressed.



I. Introduction

The strong and weak equivalence principles (SEP and WEP) are
linchpins of modern gravitational theory. The SEP almost
uniquely yields Einstein’s theory [1,2], while the WEP has been
verified to high accuracy (for distant sources) by Eotvos-type
experiments [2,3].

Recently, two arguments appeared for violation of the WEP

at intermediate ranges (10! m < r < 104 m). Ref. 4 discussed

(possibly spin—dependent) forces due to psuedo-goldstone boson
exchange. Ref. 5 re-analyzed the original Eotvos experiment
and found evidence for a difference in free—fall acceleration
proportional to the difference in Baryon number* per unit mass.
To determine if such WEP-violating forces ("hyperforces")
exist, experiments using laboratory-sized masses will likely be

needed. In this essay, I describe such an experiment.

II) Eotvos experiments and their drawbacks

Eotvos, Pekar, and Fekete [6] compared inertial and
gravitational mass wusing a torsion balance sensitive to the
difference in the horizontal components of gravitational and
centrifugal acceleration (due to the Earth’s rotation) for two
differing materials. The Eotvos experiment suffers from (a) an
apparatus which 1is very sensitive to gravity gradients, (b) an
uncontrollable torque (since the rotation and mass of the Earth

are fixed), and (c) a data analysis which may be flawed [2].

¥or lepton number, or hypercharge; for every element except

hydrogen, these ratio are nearly proportional.
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Roll, Krotkov, and Dicke [2] and Braginski and Panov [3] solved
(a) by using a mass distribution with vanishing quadrupole
moment, and (b) by looking for a 24-hour periodicity due to the
Sun. However, the required high sensitivity and large number of
normal modes of their apparatus made it quite susceptible to
seismic and thermal noise. Furthermore, the Sun is too distant

to interact with the apparatus via intermediate range forces.

III) Resonant detectors

To avoid the deficiencies above, while retaining the
posjtive features, consider another device --  namely, the

rotating gravity gradiometer, or mass detector [7]. It consists

of two perpendicular "dumbbells" coupled by a central torsion
spring and magnetically suspended from a turntable. As the
detector rotates about the spring axis, any external masses

produce periodic tidal torques on the dumbbells at twice the

rotational frequency. If the frequency of the tidal torque is
tuned to the resonant frequency of the detector, an oscillation
proportional to the product of the torque and the mechanical "Q"
results; this may be detected synchronously using a strain-gauge
and a lock-in amplifier.v The detector described in [7] (Q =
400) easily senses a 15-kg mass at 0.5 m.

A similar detector consisting of two bodies having
"hyperdipole" moments may be used to search for "hyperforces".
It has the following advantages over an Eotvos apparatus:

1. robust design
2. single normal mode

3. more massive test-bodies
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4. resonance amplification of oscillation

5. synchronous detection

6. controllable rotation rate and source distribution

7. magnetic suspension seismically isolating the detector

1

8. negligible thermal effects

IV) Detector response equations

Lacking a specific "hyperforce" model, assume (in the static
limit) a "hyperpotential" linearly coupled to a "hypercharge"
density. The total (gravitation plus "hypercharge") interaction

energy of the ath? test body is then

ul®) . I (00 ® + en®y v . (1)

Here, ¢ and ¢ are external gravitational and "hyper" potentials,
and p and n, the mass and "hypercharge" densities. Also assume
that ¢ satisfies a Yukawa (modified Helmholtz) equation ——-
(vz— u2)¢ = 0, with inverse range p. (I shall not treat here
gradient-coupled spin—-dependent forces, but the extension should

be straightforward). The general solutions for ® and ¢ are

X
o(r,6,9) = ) AnmrQYQm(e’¢) . (2)

and, for ur « 1,

#(r,0,) = ) Bnmr“Yzm(e,¢) . (3)

b}
(For ur 2 1, replace r in (3) by a modified spherical Bessel

function). Summations run over 0<Q2<o and -2<{(m¢R unless

otherwise shown. Under the Condon-Shortley phase convention,

X

m
AR,—m = (-1) Agm for real ¢, and similarly for Bnm' Inserting
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(2) and (3) into (1), and replacing ¢ by ¢’ + ¢a(t), where ¢’

is the body-frame azimuth and ¢ (t) the instantaneous rotation
a

(a)

angle of (a), U becomes
(a) E (a) (a)
U = -i A J + B K 4
expl 1m¢a]{ fm Qm am fm (4)
(a) (a) [13 7"
where Jg and KR are the mass and "hypercharge" moments of
m m

(a) in the body frame.

The detector response follows from the lagrangian

R R R T
T2 vyt Y g Klv, = ¥y
S, (@)
Qm 2Qm Qm 2m
2
PRI
m m Qm 2m

exp[—im¢l]{A (5)

1
~1 el

eXP[“1m¢2]{A2

where I1 and 12 are the moments of inertia of (1) and (2) about

the z-axis, and k is the torsion spring constant. The equations
of motion are
I ~ s _ _
¢ V(¢2 ¢1) K(¢1 $_)

2
(86)

- . . (1) (1)
B z im expl 1m¢1]{A2mJ£m " BRmKQm b
12¢2 + v(¢2 = ¢1) + K(¢2 - ¢1) o
T, . (2) (2)
B 2 im exp[ 1m¢2]{A2mJ2m ¥ BﬂmKQm b

where the damping term (with coefficient v) accounts for bearing
friction. Introducing the relative and "center-of- moment"

angles s and 8, and the abbreviations



4!1:(6'-86), ¢2=(9+Bs)s
o = (11/10) , B = (Iz/Io) ,
Io = ( I1 + 12 ) I12 = (IlIz/Io) ,

the response equations (to first order in &) become

" —i 2 1 2 1
Ig = Eim e lme{A [ 72, 5 )] +B_ | k2, g )]} (8)
o m m Qm m am Qm
2 —-ime (2) (1) (2) (1) }
- A J -BJ + B K -BK s
sz me { Qm[a m B m ] Qm[a Qm o m ]
W
* o - 2

I + —— + 9

12[ 5 g ° N s] (9)
-img (2) (2) (2) (1) }

= i A J - BJ + B K - BK
E1me { Qm[ * 2m B m ] Qm[ * m B m ]
2 -i 2 (2 2 (1 2 (2 2 (1
~ szm . 1me{A [a J( )+B J( )] [u K( ) B K( )]}
Qm m m Qm Qm Qm
1/2
Here, w = (K/Ilz) is the natural frequency of the detector,
o
and Q = w 112 /v its mechanical quality factor. There are two
o

types of forcing terms. Those without the factor s, excite the

detector directly; those with it, excite it parametricly ([8].

V) Analysis

If the r.m.s. value of the right-hand side of (7) is
sufficiently small that 6 = {const} = w 2 the dominant Fourier
component of the right-hand side of (8) will be at the resonant
frequency of the detector. The Fourier series for 6 converges
very rapidly; thus, setting s(t) = Re{ s e—iw°t} in (9) and

neglecting non-resonant terms,
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8 = - Q { —mmm———————c ’ 10
o IZ 4 QZIPIZ (10)
12%
where
Y (2) (1) (2) (1)
D = A J - BJ K - BK ,
Z { nl[a 21 21 ] Ql[“ a1~ Bt ]}
Q=1
T L2.(2) 2 (1) 2,(2), 2 (1) }
4 A J K +
Z { a2 T P Yo ] gz[“ az B Bgo ]
To suppress a spurious response, we seek to minimize gravity
terms and maximize "hyperforce" terms through symmetry of the
source and test-bodies. This is necessary for the first few 2
only.
First, choose test-bodies (1) and (2) to be identical (so
(so o = B = 1/2 ), and oriented such that (1) is rotated by 180°
2 1
from (2) when s = 0. Then J = J( ) = (- l)mJ( ) , and
Qm m 2m
(0 , M even
[aJ(Z)_ J(l)] .
m Qm J , m odd
m -
'J s
2 (2) 2 (1) (%o T even
(o ng + B ng 1 = 9
0 , m odd
and likewise for Ksz Since (primes denote body frame)
m
J._ = - A(3/8n) M X* - iy’
11 A(3/8m) total( cm t cm) ’
— 1 _______ L]
le =3 A(15/8n) (I vyt lIy’z’) R
— 1 _______ 2
J22 = 12 A(15/2n) (I x Iy’y’ - 211x’y’) ,



if the rotation axis passes through the center of mass, the

body and principal axis are aligned, and I =~ =1 , the
X' X y'vy

lowest non-vanishing J-term is & = 3. Dicke’s arrangement [2]

very nearly satisfies this; furthermore, its’ J31 and J32 are

also quite small. (The two largest terms are J20 and J3 , which
don’t contribute to 80). |

To suppress unwanted AQm’ place 2N long cylinders of equal
mass at the vertices of an equilateral polygon, normal to and
symmetric about the midplane. Then the Aﬂm vanish for m = x2jN

(j an integer) , and Q = 2jN dominate. If N > 2, the AQ do
m

not contribute to & at all!
(0]

To maximize Bg , make the first N cylinders of substance I
m

and the last N of substance II. Then BSZ = 0 for m = 2k (k an
m

integer) and 2 = 2k dominates; only 2 = 1, m = #1 contributes to
§ . To check any positive response, place substance I at even
0

vertices and substance II at odd vertices. Then BR = 0 for
m

m = 2(2k+1), and & should vanish. Figure 1 shows a conceptual
0

diagram of the apparatus.

VI. Conclusion

I have shown how the lowest order response of a resonant
detector to external gravitational and "hypercharge" fields may
be expressed in terms of its multipole moments, and discussed
how spurious gravitational responses may be suppressed. Such a
detector is inherently immune to the major sources of error in
Eotvos experiments, and may provide a viable alternative to them
for 1investigating the existence " of equivalence-principle

violating forces between laboratory-scale masses.
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A - substance A I - substance I
B - substance B ITI ~ substance I1

C - hub (spring, strain gauge)

Unprimed (primed) denotes test-body 1 (2).

Fig. 1 - Conceptual diagram of detector.




