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Abstract

I show that highly excited Rydberg atoms nearby astrophysical
gravitational wave sources are expected to emit significant electro-
magnetic radiation in the radio through a process of gravitationally
induced resonance fluorescence. Semiclassical arguments are discussed
and a quantum-mechanical expression for the differential cross section
is obtained. This process could provide a new observational tool for
the remote detection and study of gravitational waves.



Introduction

Recent studies have rekindled interest in the effects of gravitation on atomic
systems [1]. These studies have shown that such effects, typically consid-
ered negligible under most astrophysical circumstances, may play a role in
perturbing atoﬁls if other processes are sufficiently depressed. In particular,
it has been shown that the gravitational tidal energy shifts of freely falling
Rydberg atoms of principal quantum number n ~ 900 or larger at the surface
of neutron stars could in principle be resolved by means of radiotelescopic
observations [1] (Parker et al. first suggested this possibility [2]).

Rydberg atoms are very fragile and thus lend themselves to being used
as probes of external fields. Rybderg atoms with n up to ~ 700 are currently
studied in the laboratory; atoms with n up to ~ 350 have been detected in
the interstellar medium [3].

However, such highly excited atoms are extremely sensitive to other per-
turbations due to external magnetic fields and to atom-ion and atom-electron
interactions. Therefore, the constraints on the temperature, density, and
" magnetic field of environments where observations could be successful are
very strict and difficult to satisfy in the magnetosphere of a neutron star.

From this point of view, observations of Rydberg systems in the interstel-
lar medium are more likely candidates to measure the effects of gravitation
on atoms. Of course in this case the difficulty is that the gravitational fields

involved are hopelessly weak. Leen et. al. have analyzed the possibility of



detecting gravitational waves by directly measuring the periodic energy shifts
caused on Rydberg atoms at distances r, ~ 10° cm from the source. These
studies imply that such effects are beyond the reach of present technologies.

In this essay I discuss the possibility of using Rydberg atoms as reso-
nant quantum.mechanical antennas for the detection of gravitational waves.
In this case, the action of gravitational fields is not treated as quasi-time-
independent as in all previous studies on the subject. Instead, it is shown
that the very high values of the quality factor ¢) cause the time-dependent
dynamical response of atoms acted upon by periodic gravitational waves to

be quite dramatic even at distances r, from the source ~ 1 A.U.

Semiclassical Arguments

The foundations of the study of atoms in curved space-time were laid by
Parker [2]. He expanded the Dirac equation to first order in the Riemann
tensor and wrote a fully covariant perturbative Hamiltonian in Fermi nor-
mal coordinates. In the case of low electron speeds (v/c < 1), the most
important correction corresponds to the tidal gravitational force stretching
and squeezing the freely-falling atom.

In order to evaluate the importance of time-dependent gravitational per-
turbations on atoms, we shall consider the effects of a plane gravitational
wave travelling toward the positive z axis on an electron harmonically bound

to a freely falling massive particle in the presence of radiation dampening.



The electron-particle system is in the (z, y) plane at the initial time. The

equation of motion then reads:
i’,‘ + ’)’:i:; + ng,- = C2R0,'0J‘(t)Xj(t) R (1)

where « is the friction coefficient related to the lifetime of the state 7 as
v = 1/, w3 is the natural frequency, Ro; is the Riemann tensor, z; is
the displacement from equilibrium, and X7 is the total distance between
the nucleus and the electron. The time dependence of the Riemann tensor
is related to the gravitational wave emission mechanism. In the weak field
approximation, the Riemann tensor is related to the metric perturbation as
Roio; = —(1/2c*)RLT, where the transverse-traceless gauge (TT) was cho-
sen. Let us consider the case of a rapidly rotating compact object whose
highly ellipsoidal figure of equilibrium can be schematized as being com-
posed of two masses M at a distance [, from each other rotating rigidly at
an angular speed w. The order of magnitude of the metric is in this case
hET ~ (GM/c*)I3 w? exp(2iwt)/r, [6].
By substituting the above relationships into Eq. (1), we find

21wt
I + 3 + wiz; ~ G;—4Ml§ w4—e——Xj(t) . (2)

Ts
As the right-hand-side term involves X’(¢), which in turn is related to z;,
this differential equation resembles those of the Mathieu kind with an ordi-
nary forcing term added. Consequently, one cannot rule out the existence of

unbound solutions typical of parametric oscillations even in the presence of
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friction [7]. However, in order to just assess the role of the tidal gravitational
force in determining the dynamics of this system, we shall assume that the
‘displacement x; is small compared to the total average distance X7 of the
two particles. In this case Eq. (2) reduces to the typical forced harmonic
oscillator equation and one can immediately write the steady-state solution

as
@ (GM/c“)l(z, w? eliwt
T @ = W)+ (wo /)

where w, = 2w . For numerical estimates, let us consider a Rydberg atom

<X >, (3)

at a distance of 7, = 10'? cm from a 3M compact object rotating with a
period T = Ims (w = 6.3 x 10% s7!). We will assume that the object can be
represented as two fragments at a distance /o = 10 km from each other.

In order for the gravitational waves to produce the largest possible ef-
fect, resonance must occur. We shall therefore concentrate on the partic-
ular n — (n + 1) transition which has a frequency as close as possible
to twice that of the spinning star. The frequency of such transitions is
Wnnt1 ~ (Z%e*m,/h%)(1/n®), where Z is the atomic number, m, is the elec-
tron mass and the principal quantum number n is assumed to be > 1. In our
case, we find n ~ 1.5 x 10* (see below for a comment on the real significance
of such high value). The semiclassical Bohr radius of such an orbit is a, ~ 1
cm and its lifetime is extremely long as it scales as n3 [8]. Substituting these

results into Eq. (3), we find a steady-state response of the order of

M
<z >~ Gc—413w37' ~107* 7 cm (4)



which, even for 7 ~ 1 s, corresponds to the order of magnitude of the distance
between two contiguous Bohr orbits in the range of n considered.

The conclusion that one must draw from these order of magnitude consid-
erations is that the time-dependent tidal gravitational effect is so large that
it should affect atoms even out of resonance. This is due to the extremely
high value of the quality factor Q) of an atom, which one can naively estimate
as

Z2 4 .
Q = wnpiaTa ~ Tz (107%m°) ~ 10°. (5)

It is important to point out that the high principal quantum number obtained
above was not due to the need to deal with extremely fragile or large Rydberg
atoms, but just to the condition that the n — (n+1) transition frequencies
match twice those of the rotating star. As it is now clear that the effect of
gravitational waves on Rydberg atoms can be quite large, this condition can
be safely relaxed to include atoms with smaller, and more realistic values of

n, for instance in the 10?2 range.

Quantum Mechanical Cross Section

As astronomical observations are typically performed by detecting electro-
magnetic radiation, we are interested in determining what processes corre-
spond to the destruction of one graviton and the creation of a photon. This
corresponds to calculating the power emitted by the electron as it accelerates

under the action of the gravitational wave in our semiclassical model above.



The non-relativistic interaction Hamiltonian for an atom coupled to a
quantized EM-field in the presence of a weak tidal gravitational interaction

can be written by generalizing Parker’s results in [4] as:

1 .
me A-p+ EmeCZROioj(t)ICZSCJ + (g — EM) terms, (6)
eC

H‘int >: -
where A is the quantized vector potential and the (g-EM terms) describe the
distortion of electromagnetic waves due to the spacetime curvature and are
therefore responsible for the coupling of the two fields.

If we concentrate on incoming quantized plane waves, we can write the
Riemann tensor field operator as
tkgz  —iw
ROlOJ Z Z ROzO]dkg g ) Eg g)e e ot ) (7)

kg Qg

where R,%; is a normalization factor, dkg o, 1S @ graviton annihilation oper-

(og)

ator, €;;

is the polarization tensor, kg is the graviton momentum, and o,
is the appropriate polarization (+ or x).

It is clear from the well known expression for the quantized vector po-
tential and from the above equation, that four processes are possible which
involve the destruction of one graviton: (1) We have first order quadru-
ple transitions described by < f|%mec2R0ioj(t)xi;vj|i >, whereby the atom
makes a transition from an initial state |¢ > to a final state |f >. How-
ever, this process does not create a photon until the atom spontaneously

decays away from |f >; (2) we then have a first order process corresponding

to the destruction of a graviton and the simultaneous creation of a photon,
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< flg — EMterms|: >. In this essay this process will not be investigated any
further as it does not play a key role close to resonance; (4) then we have a
graph corresponding to the destruction of a graviton at time ¢, followed by
the creation of a photon at ¢, and (5) another graph corresponding to the
creation of a photon at time ¢;, followed by the destruction of a graviton at
9.

By using standard second order perturbation theory techniques, it is sim-
ple to calculate the differential cross section corresponding to processes (4)
and (5), which both contribute to the same final state. One finds the follow-
ing cross section for a photon of momentum k, and polarization c., emitted

into the solid angle df):

do < flp - €7|R >< Rle;fz'z’ |t > ?

o = Clke ko) ; Ep—E; —hw, —ilg/2 |’ 8)

where the sum is over all intermediate states |R >, I'g is related to the ra-
diative lifetime of |R > as I' = &/7g, and C(kg, k,) is a global normalization
factor.

The above expression simplifies considerably if the gravitational wave
frequency w, is close to (Er — F;)/h for some state |R >. In this case,
analogous to resonance fluorescence, the cross section rises sharply and is
bound to a finite value only by the limited lifetime of the intermediate state.
In the simple case in which only one state |R > resonates with | > for a

given wy, Eq. (8) takes on a form very close to what one would obtain from



the semiclassical model (proportional to (2)? in Eq. (2)):

do | < flp- IR >< RlSatalli >
a0 Clkg, ky) (Er — Ei — hw,)? +T%/4 ‘ Y

Possible Observations

One can reasonably expect several effects of such gravitationally-induced
resonance fluorescence on the overall radiation output of atoms in the in-
terstellar medium. I am presently conducting a detailed numerical study of
the cross section for Rydberg atoms nearby gravitational wave sources. This
includes polarization of the wave and of the EM-radiation, line broadening
due to altered lifetime, different geometrical arrangements of the star, atom,
observer, etc. I am also studying the effects on statistical state populations
which would again be affected by these induced transitions.

As the effects described in this essay appear to be rather common, one
cannot not rule out the possibility that radio emission from atoms might turn
out to be a useful tool for the remote study of gravitational waves in the kHz

frequency range.
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