Classification of stationary space-times

by
5 ¢
Zoltan Perjes
Department of Mathematics, Birkbeck College,

University of London*

Abstract

A systematic approach to the geometric structure of

stationary gravitational fields is presented., The algebraic

type of the trace-frece Riccl tcnsor together with the provaga-

ticn proverties of the eigenrays in the background 3-space

defined by the Killing trajectories serve as a baci

K3

S

for

classifying the soluticns of the stationary fiecld eguations.

The elgenrays are the integral curves belonging to the solutions

. ] ) B B .
'EA of the eigenvalue problem GAigﬁzﬂ;fA R GA SDINor repre-

V]

senting the gravitational field in the background s»ace.

any of the already known stationary metrics can be derived

in the present schenme but new solutions of the field equations

are also obtaincd, 'The possible tyves of the vacuum and

clecectrovac

fieldz are discussed in their connection with the corresponding

evact solutions,
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1. Introduction

The content of Tinstein's equations of gravitaticn is that the
traces of the curvature tensor (i.e., the Ricci tensor and curva-
ture scalar) are locally determined by the energy-momentum tensor
of the matter distribution, whereas the conformal curvature,
conveniently described by the Weyl spinor gy ARCD? represents the
degrees of freedom of the gravitational fiecld itself, This 1is

why the Petrov c]ass“*;uaulonl’a

, based esscntially on the algebra-
ic properties of qg*BCD , is an adequate means of characterizing
the structure of the gravitational field. When the field admits
a Killing mction, there is an additional invariant structure
present, however. The properties of the Killing vector field,
evidently, canncot be described in the framework of the Petrov
classification.

In many cases of theoretical imeortance like the final state
of =+ - gravitational collapse, certain wmodels of the Universe
and alwost in all experimental situations (with the nossible
exception of the gravitational wave experimecnts) the gravitational
field is staticnary so that there is a time-like Killing field
present. The stationary gravitational field is the subject of this
essay. The spinor approach adopted hcre takes advantage of the
presence of a Killing field right at the outset. It has always been
ammsettled vroblem how do the Killing symmetries fit into the

general-relativistic su»incr forralism, In Section 2 we shall show

that a natural spinor description of the staticn fields is
available in a three-dimensional “iemannian background space¥®
(being essentially the svace of the Killing trajecto S'OSB).

*Some of the ideas proposed here have avnpearcd in earlier pavers by

)

our results have not been pub-

lished before. This is alsc a first attemct at a systematic

the author®s”, but the majority of

treatment of the stationary gravitational field cblern. Some

formal develorments in an SI(],l)_splhor aporoach to s»a

. ‘ . G 5 !
Killing motions have been made by Jukacs‘ and Perjes7.

ce-like




In Section 3 we present the spincr eguations of the stationary
vacuum. The gravitotional field apvears on the background space
represented by a symmetric spinor GAB . The eigenrays of t?epgravi—
tational field which have been introduced in earlier papers)’J oy
more sovhisticated tensor methcds emerge here as the integral curves
defined by solutions ~§A of the eigenvalue problem GEEB = }A .

A detailea study of the geometry of eigenrays will be présented
in Section 4. This provides us the basis for classifying the station-
ary space-times., The relation between the eigenrays and the background
Ricci tensor of the vacuum as well as the bearances of Petrov classi-
fication to the proposed scheme convletes the discussion of Sec.l.
FPinally, Sec.5. 1s devoted to the structure of stationary electrovac
fields. Both well-known stationary metrics and solutions derived
recently by use of the goresent avyproach are shown to arise under simple

assuwmptions fitting into a coherent picture (Tables 1 and 2).

2. The Killing $pinor

We shall be relying here on the well-known Infeld and van der
\ . , . , 2 . . . .
Waerden version of SL(2,C) spinor theory ’9. Our primary object is

a one-index spyinor¥ fA which transforms according to the rule

AN
Th=AM T, (2.1)
'AA - - - « . .
Y being an element of the SL(2,C) zroup. When considering
components rather than the abstract geometric objects, it is conven-

ient to introduce the Hermitlian connecting quantities 5;&9 satisfying

*Spincr indices talte the values 0 and 1. Primed spinor indices (with

values O' and 1') are :cransformed by the complex conjugate gquantities

[®]

Al o . . ] . . 5 .
/\ g + ~Pinor indices are raised and lowered by the skewsymmetric
B

Spinor € and its inverse QAB , respectively., CGreek world tensor

=

indices range over 0,1,2 and 3. The sigr:oture of the metric is chcsen

(+==-).
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6/“(0 6» + 6»()6\/&3(’ = 8/4» €arn (2.2)
Contractions with the time-like Killing vector K vield

RS B 2y

KAC‘ Kxc' "’Z{'G‘AB (2.2)

1 ~ — { ’UL w
where KAC' = GAC' K

in a ststionary field £2>0 .

is the Killing spinor and f = Ky k* so that

The Killing spinor has a primed and an unprimed index and,
consequently, it can be used for establisiiing a correspondence
between the two kinds of incices. Then, to any given spinor 'iA

. . ) oy
one can assign its "adjoint spinor" '§ by

A o E,’ K AN \EA' . (2.1)

PN T o 2 . ; s s
The advantage of including the factor J; in the above definition
is that, according to Tg. (2.3), for the double adjoint one can

neatly write

‘§++A=‘IA ' (2.5)

P

. . . . A .
The complex conjugate of a spinor invariant, say‘f ’}A , is the

contraction of the corresponding adjoint spinors:
<A - _~§+A +
T oya = Vs (2.6)

The above construction is essentially a coveariant form of the
. rinor theory wi primed wrpper indices ar onsidere
SU(2) spinor theory where unpr d wrper indice re considered

.- . . . . 1¢ 0 z i 3
eguivalent to primed lower indices _E 6¢.§0‘,.E **‘gl’ . In fact

(%-[KAA'] ““[cl ?] (2.7)

ion of the Killing spincr gives rise to a restriction
0

rrations. The subgrour of the trans-
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. . IQA . . .
formation matrices ;] oreserving the form (2.7) is nrecisely the

5U(2) group. Using revpresentation (2.7) it can also be seen that

the norm "g”éﬂ‘(g"‘&t )‘h'of a one index Soinor -§3 is non-negative:
T
5l = T4 5,= %ol + 512D, (2.8)

In order to avoid formal comnlications in the forthconing
discussion, it will be advantgeous to introduce a special coordinate
system in which the Killing field has the components Kp': 5@; .

ie
The remaining coordinate freedom 1s¥

"= M1t + w () (2.9a)

P

= () (2.9%)

with Jl = const. In this coordinate system the metric field quantities

appearing in the line eleient

§(dt + e = £ Guediion®

(2.10)
are indercndent of the time coordinate t = x°  and so can be chosen
the connecting quantities and Killing s»incr KAA' .

Quantities 9'k transform uncder (2.9b) like components of a
symmetric tensor. Hence we can envisage ‘91“‘as the (positive-defi-
nite) metric of a three dimensional Riemannian sv»ace. In asymptotic-

effect of (2.9a) is a conformal
n* -
factor.

By 2 straightforward generalization of (2.%), all oriwmed spinor

ally flat space-times the parameter JL is convenientl y chosen to be
unity. in more general situations e
t

th
rescaling g;k—@ﬁ. 9& by a constan

. O

J
indices may be convorted into unwerined ones. For instance, the

PR i .
"3U(2) connecting gquantities" S}E» can be introduced by
e( dd: [H c cl&
[
AR T (2.11)
These guantities have, by Fq. (2.2) the properties

*Lower case Roman indices range over the values 1,2 and 3, and are
. . K .
lowered ana raised by R anc its inverse €) respectively,

The numerical Levi-Civita symbol i1s written e’ijk'



Gie = 03». (2.122)
| O P N S S YA
Gip_sj?, dr.(\ﬁe 61& 63 (2.12b)
AL C AnC _ [T c.. kA
Gtcﬁd‘&‘ 3@.(’\ d—i‘el‘)“s kS (g’ (2.12¢)

Fguation (2.12c) tells us that the matrices %3;3] (for a fixed
value of i) are essentially gonerators of the SU(2) zroup.

Trom the prmiticity of the connecting cuantities ’“iag it
follows that kskg] matrices are Hermitian. Oddly enough, this is
written in a covariant notation as

U _ _ alt
g © 6Ms‘ (2.13)

i
=
0]
i
£
)
)
Q3
o
—

ental spinor qugon the other hand, is self-adjoint;
+ — ~
GA,B - eAB (C.lLF)

The curvature tensor of the 3-space with metﬁngik can be de-
composed into the curvature scalar R and the trace-free part of
the Ricci tensor corresponding to a self-acdjoint four-index symmetric
spinor,

’Rik“_‘iz,ﬁitfk © Paraens Pherr Paren: (2.19)

In the presence of the Killing svinor the algebraic

hAA' ,
propertics are more diversified as compared to the general SL(2,C)
formalism. The rceason for this is that in a canonical decomposition

of the form*

=
N
~—

Pae.r) = X(aPz - KR) (2.
it is not only the prircirzal. spinors which may be pairwise provortion-
sations extend to adjoints of princiral spinors too.
1ear that w an have either o< r ¥ 1 = *
s means that we can have either o e<f, or D(Aoc{;A (but O(A Zo(A
would imply o,=0 since O(Aa(""‘:?uip(‘”\:o R

A
*¥*Round index brackets dencte symmetrization. For a syammetric spinor,

e.g., we have CPAL...Rzlf’(AB...R) .



3. Spinor derivatives and the eigenrays

The covariant derivatives of 3-tensors are formed by using the

Z-metric 9ok - A covariznt J3-derivative of swvinor fields with the

standard oronerties (linearity, reality, Teibnitz rule) can also be
defined, “e postulate, by analo with the four dimensioconal syinor
i b J &
.12
analysis™

Vieg=0=¥; SA‘B

S—

. . . ® . . .
The spinor affine connection | A , appearing in the covariant

VLTA = a\fA/axt -T %A %a (3.2)

can be expressed, using (3.1),38 follows;

derivative

[}

4

Having introduced the Spinor'derivative overation, we find that
the covariant cerivative of the quantity {ZH(AA' , appearing in
the spiror adjoint (2.4), vanishes. That is to say, the overations
cf covariant derivation and adjunction commute.

The field equations of stationary space-times take a remarkably

=
simple form in the spinor notation. Introducing the complex 3-vector”

!

it V- Ve §* (3.1)
G ="

we have, for instance the vacuum equations in the tensor form

Rik * GG+ GG, =0 (3.5a)
(V-G +0)'c=0 (3.5b)
(V-G +3&)x2 =0 (3.5¢)

=a'® (%
driting G =0 G’ and V,: =6 v¢ , thise equations are concisely

vut as
¢A$CD - G(A3

(VR-GE-C®)G,. =0, 2

,\

N
N
o}

~

L
.
(O
e
g



where éABCD is the (trace-free) 2icci sninor (cf.(2.15)).

From (3.5a) it is straightforward that ‘iA&QD is locally
determined* by GAB . The »rincipal svinors of GAB are solutions
g, of the eigenvalue problem

GA3'§»3=/L~§A° (3.7)

Witk the exception of the case G.G = C , there are two linearly
independent eigensyinors -iA°

The spinor -§A defines a real vector L in the 3-space of
metric ﬁik :

Li'-’ E 6€A$-E*A\€j, (:

2.8)
(the fE factor is included here for later convenience), It also
determines a complex null vector m orthogonal to & by
i~ o X .9)
m= (o) A Sp ¢ (3.9
This complex vector spans a real plane element with norma { .Thus,

a one-index spinor §A defines a complete vector basis in the 3-space.

Mormalizing to unity, l.e., taking

O

XM EA=, (%.10)

we cbtain a complex vector basis with L* (_'—‘@s@:l and all other
scalar nroducts petween: basis elewents vanishing.

The propagation properties of the vector basis (é ,m,m) are
conveniently characterized by the comwlex rotation ccefficients

=
(or, equivalently, SU(2) spin coefficients”)

‘k 1 - b N 3 " - . ¥ =t - ~ -
k= Lige U’y Qamp @ 4%, a=mpem U, Tempem'a, ezmelm, (3.11)

*In & general stationary ficld, with matter present, (3.6a) contains

matter field terms too.



denoting covariant d

erivation by a semicolon
t

in the suffix.

The first curvature of the congruence of curves with tangent vector
L. is given by & . The divergence, curl and coumplex shear of the
congruence is given, respectively by E&zQ ImQ\ and & ,

WhenIEA is chosen a solution of (3.7), the curves with tangent
vector & may be called the eigenrays of the gravitational field.
In static swvace-times (with C real) the eigenrays are the orthogonal
trajectories of the =squipotential surfaces £ = constant in the three-
space., In the gencric case, however, the geometric picture is more

c

omplicated” and there may be

The geometry of eigenrays,

related

together will serve as a basis for classifying
1 fields,

gravitationa

to the algebraic tyve

two solutions of the eigenray problem*

(3.7), is

field,

nf

seen from ©Bg. clos

of the

as is

ely

cravitational These

the stationary

in the following sections.

L. Types of stationary space-times in vacuo
In a conventional tensor avnorcach to the

one meay consider the

the trace~free Ricci

degenerate (type D
in}

Let us illustrate this

classification problen,
. . . def ol " .
eigenvalue equation of —P?é’ki‘—%éiﬂ (i.e.,

tensor),

3
P = Ay (4.1)
appear to be unrelated to the geometry of
connection between the two emerges in the spinor

on the

which all

important examoyle of the

o) static vacuum metrics and

. . 1 - -
the axisymmetric Papapstrou solutions™ also belong. #or type D
fields, two of the cigenvalues in (4.1) are egual =o that, from
field equations (3.6a) it follows
*This was first pointed out by 2.Pznrocse.



G

the canoniczl decomposition

GAB = X (53) )

1GOI

(4.2)

Using
(L.3)

2g. (L.2) is written

X alsy = o (Ujsy (4o )

Hence we have that the eigenspinors degencrate according to

L&

Pa=7%n (4.5)

™ ) o) ¥ _ « . - _Y_ i 4 - +
For static fields GAg‘?‘x(A‘x;) is real; GM‘;' ’Z“(Adg)- Z“@\”(z);
so that ’z is real,
A further specification results from the fairly restrictive
condition ¢ = O. Frow field equations (3.6a) it follows that the only

stationary vacuum with G = O is the lMinkowski socace-time*. The

weaker condition GG = 0 offers slightly more generality. Then G is
a comvplex null vector so that we may call these fields type null (N).
In the canonical decomwosition (4.3) the two eigenrays coincide;

C:Aa qﬂxdﬁ) Tield ecuations (%.5) imoly that the eigenrays of tyne N
s

fields are geodesic and

the CGoldberg-Sachs theorem™ ., “fith the exception of the “inkowski

space-time, a type I ficld cannot be asymptcotically flat since in an

asymptotically flat space the leading term in G at infinity must be
real. Ye may vossibly interpret the ftype ¥ fields as gravitational

standing wave solutions., The plane-fro

' ‘S

ted standing waves are given
by<?:() (nondiverging and nonrotating cig-nrays). The line elements

for type N fields with both Q}O and ? O are shown in Table I.

*For the IMinkowskil swpace-time we have 0 = 0 . The field equations
preclude the R £ O constant “-curvature soluticons for both vacuum
and slectrovac ficldxz.

ar-free., This rewvnresents, in three divensions,



- 10 -

The type N ficld equations can be written for both line elements as
R i |
dz T 87  8(Rez)

az
The classification scheme can be further refinsd by censidering

1

[
a -~—~;I.-;‘Q. ¥ (See Table 1)

31)!'@

the provagztion proverties of the eigenrays in each algebraic class.
(Table T.) The Schwarzschild field, being a static solution, is of

odesic and shear-

(‘Q

tyve D, but it also is exceptional in vossessing

ee eigenrays,., Its important generalization, the

[N
ks

o
-
o,
@)
)
]
L
H
i
b
H
3
o

tyne G (general) but still it has geodesic an

eigenrays. ‘he general solution of the class wis earing geodesic

e
'
gigenrays has been found by Kota and the author™. The resulting

line eleuents do not contain the Ferr solution as a limiting case,

rather they are asymplotically nonflat. One of the linc eiements in

this class,

0 Y0 2
deé= _u dat - Z’x)‘&a)de r3+Q (0(1 +fr'°dx *«rnondj) (L.7)

1}+

o] 2 } L = . .
(f7, Q, & and ¥ are real conctants and G°+X’:l ) is a type D
Papapetrocu solution.
The Petrov classificztion of the Weyl soi \yAgcp does not

specify the wronerties of tre Willing field for a stationary
e-time and as such, tells less about the geonmetry, Tt is still

s &<
however, considering the rclation between the two schenes.

Je define a convenient s»inor dyad in terms of the rpormalized eigion-
SDINoY A’

A (l+‘8)

2\* o
Using %the notation GO::Q:L we Tindd
o = 4/‘“‘-904030(‘91) = -26 Gg (L.9a)
P, = Yaeco o*0®0 e = \)—C i« Go (1)
| =
\«'Pl Lk/’r&cpo“\ogl—( " '§(Q*G°)Gc . (4.9¢)

i

in



) ¢ nrincizal null divections
when &= . Tor shear-free geodesic eigenrays (K=@s= QO ) we have

rther that Qor\k‘:O, the space-~time being

5=0, we find that they are of Petrov tyre I, Finally, for
the null fields we have G—a=0and, from 9.5 (4.9), Yo=Y, =Py O,
or more special, Unlike in the

SChGKG, no gcneral stotement can be made about the static vacuum
0

5. Ilectrovac types
Stationary electrovac fields are characterizod by the presence

. .1
in the snace-time +,

I

of a tine-indevendent, soureeless Maxwell field

The Maxwell field is given by a comple H the real part

[e -
\H
]
<
6]
e}
o
e} .
=

of which can be interwnrsted as the cle

tric field and the irnaginary
_L l 6 i1, —'

part as the magnetic field he written
(V-G)G=HE-CC (5.1a)
VU x@ = Hx - GrG (£.1b)
(V-0)E =3 -0 (5.1c)
Uxd =-4(C + 3)xI (5.1d)
R = -G.G, -G,C,+H ° +0.H,_ . =.1le
“ik Pl TGO Ot R R (5.1e)

The appearance of the Maxwell vector H in (j le) gives riss

to a significont ¢ field. In

addition to the eigonrays of the gravitatioral vector G we can

define eigenrays of L. G and H hove a amon elgenray congruence

vhen

The algebraic proverties of ¢ and I together will determine the
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L A

structure of the 7cci tenscr. & convenient way of revealing the
proverties which are co mon to both ¢ and I is to consider t
cigenvalue prcblem P Vi = .)V as the basis of the classificatiocon.
The picture so obtained will be completed by taking in o)
geometric nroperties of the cigenrays.
The strongest possible condition F. = 0 already allows a wide

class of solutions ‘he

¢

se are the fields with a flat background 3-space.

. 17
solution of the problem has !

been found by Israel, Tilson
and Perjés . The resulting metrics can be interpreted as the external
s in the presence of charged spinning boedies held in equi-
1librium by the balanced ﬂlectromagnetic and grovitational forces,
The avyropriately charged (e' = ma) Kerr-Newman solution is a

rarticular member of this class,

t'he degeneracy concition Al:kl for electrovac fields turns out

to be from Rg.(5.1e)

GrG - Hx W) = -4| G H|*. (s

.
AN
g

For static space-times (G real) the Maxwell vector I can be made
real by 2 duality rotation. Hesnce we have that » static electrovac
field is of degencrate tyre provided G and I have common eigenrays,

-

This further means that the cquipotentizl surfa f = const. ana

ces
A = const. ﬁA being the time-like component of the electromagnetic

)

potential) vairwise coincide. Solutions of this tyre are the axi-
symmetric eyl metricslS and the Bonnor metriclg cbhbtained from the
Kerr solution(Table 2).

The Herr-Tewman ficld satisfies (5.2) and its two elgenray
congruences are common to both ¢ and H . The twc eigens
also the (double) vrincival spinors of the Weyl curvature. The eigen-
rays of the Kerr-evuan field arc geodesic and s

One can explicitly solve the ecuvations of elasctrovac fields

nray congrusnce, cven when the shear &
soluticn has been found by Lukdcs and

the corresponding vacuum case, the
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charged Kerr solution cannot be obtoined from this class in the shear-

. L ' ~' . . . - ~
free 1init6=0. One of the Lukacs-Perjes metrics is singulerity-iree,

This 1is given by

ds*= (4 - £2 sk 2o @) 22 o &)

oS 2.CoLT

1" ’ * (5.4)
b- T K= (26°Q) ta 2 =62 (x4l Q),

where &i is the electromagnetic potential and Q’p,Q,{ s are real

constants., The common eigenray congruence 1s characterized hsre by ?=Cl
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