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Summary Paragraph:

We have carried out a renormalization group analysis of the
gravitationally significant coupling constants in SU(5) grand unified
theories in curved spacetime. We find that the effective values of many
of these coupling constants at high curvature are determined by quantum
effects depending on the numbers and types of elementary particle fields
present. The resulting high curvature behavior of the theory evidently
has interesting properties under conformal transformations of the space-

time metric.
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It is currently believed that quantum effects play a dominant role in
the evolution of the very early universe. The large curvature of spacetime
at early times gives rise to unexpected phenomena, such as the creation of
particles by the expanding universe, which have strong dynamical consequences.
When realistic elementary particle interactions of the type occurring in
grand unified theories (GUT's) are taken into account, further important
processes are introduced, such as baryon number non-conservation and phase
transitions between states of vastly different vacuum energies. These latter
processes do not necessarily depend in an essential way on the curvature of
spacetime.

We would like to discuss here some new consequences of grand unified
theories that do depend in an essential way on curvature.1 We have considered
several GUT's, including the Georgi-Glashow SU(5) theory2 and a related
theory3 in which the scalar self-interactions are asymptotically free. We
find that at high curvature, such as existed in the early universe when
particle energies were at the GUT scale of lO15 GeV, the effective values of
the coupling constants which govern the strength of the interaction between
curvature and matter are largely determined by the elementary particle
content of the GUT under consideration. The coupling constants which behave
in this way include the cosmological constant A, the coupling constants E¢
and EH linking the scalar Higgs bosons to the curvature, and the coupling

constants Oy which are coefficients of terms in the action that depend

quadratically on the curvature tensor. The Newtonian constant G is



exceptional, in that its value is evidently not significantly affected by

19 GeV) is approached.

curvature until the Planck scale (energies of 10
As early as 1962, Utiyama and DeWitt4 showed that quantum field effects
in curved spacetime will modify the Einstein field equations, introducing
terms quadratic in the curvature. These quadratic terms are necessary for
the renormalization of similar terms that appear in the part of the Lagrangian
containing the quantum matter fields. Here, as in quantum electrodynamics,
one obtains finite well defined results through a redefinition of the
coupling constants of the theory. These renormalized values are the
effective coupling constants that one measures.
The renormalization procedure is easily expressed in terms of the
effective action,

(1)

r =1+T R (1)

which consists of a part having the usual form,
1= Jdvx L, (2)

where L is the sum of the gravitational and matter field Lagrangians, and a
part F(l) containing the quantum corrections, These quantum corrections
include infinite terms, which can be made well defined or regular by working
in a dimension d other than 4, in which case the infinite terms are replaced
by terms having poles at d = 4. The terms in T(l) which have poles are of
the same form as certain terms appearing in the action I of Eq. (2). Thus,
by assuming that the original or "bare' coupling constants in I include parts
(called counterterms) having similar poles, it is possible to cancel the
pole terms in F(l), so that the effective action I' is well defined at
dimension d = 4,

In the process of regularization, it is necessary to introduce a

parameter Y of dimension mass, in order to keep the action dimensionless (in



units with h = ¢ = 1) when d is not equal to 4. The effective action and
bare coupling constants are independent of the value of u. However, the
renormalized effective coupling constants do depend on u. Typically, a bare
coupling constant g is related to the corresponding effective coupling

constant q(d) through an equation of the form

qp = ud4 (q+sq) . (3)

The quantity 8q is the counterterm having a pole at dimension 4, which is

F(l). Differentiation with

required to cancel a corresponding pole in
respect to U of expressions such as Eq. (3) yield the renormalization group
equations, a set of differential equations determining the dependence on u
of the effective coupling constants.

The renormalization group scaling in U can be related to a scaling of
the metric and of the curvature invariants of the spacetime. Because the
effective action I' is dimensionless, it must be possible to write it as a

functional of dimensionless arguments,

_ai 2
I'=Flu “q), u'g 1 . (4)

Y
Here qi(u) is a quantity, such as a coupling constant, of mass dimension Si,
and we have for convenience taken the coordinates as dimensionless. Because

I' does not depend on 1, one can then show5’6’l

that the scaling of U by a
dimensionless parameter s, U > us, gives the values of the effective coupling
constants appropriate to the spacetime obtained by scaling the metric as

guv > s guv. Under this latter scaling, curvature invariants such as

RuvRuv scale as 34, so that the large s limit corresponds to the high curva-
ture limit. Thus, the renormalization group equations give information about

the values of the effective coupling constants at high curvature,

The above techniques can be applied to various proposed unified



elementary particle theories in order to find the form of the effective
coupling constants which govern the interactions of matter with spacetime.
One first calculates the relevant counterterms and then the renormalization
group equations. These differential equations are integrated with approp-
riate boundary conditions to finally obtain the form of the effective coupling
constants at high curvature. We have so far obtained the form of the
gravitationally significant coupling constants for SU(5) grand unified
theories.2’3 We have worked with the unbroken symmetric phase, so that our
results are relevant to the era between the phase transition at the GUT scale
and the Planck time.

When the renormalization group equations are solved for the effective
cosmological constant A(s) and its present value is set equal to zero, we
find that A(s) in the GUT era can be expressed in terms of the Planck and

Higgs masses as

-2 4
A(s) ~ (mPlanck) (mHiggs) > ()

which is of the same order of magnitude and sign as the value of A obtained
from the vacuum energy in the inflationary model of the universe.

Because of the present large value of G_l, the solution of the renormal-
ization group equation for G_l(s) is dominated by the constant of integration.
Consequently, the effective gravitational constant G(s) has essentially its
present value through the GUT era. Only at the Planck scale is its value
significantly affected.

For the coefficients ai of terms in the action quadratic in the curvature
tensor, integration of the renormalization group equations gives results of
the form

ui(s) = bi ln s + constant , (6)

where the bi are numbers that depend on the particular grand unified theory



under consideration. To obtain an order of magnitude estimate of the ai(s)

in the GUT era, we can take the ui corresponding to the present mean value

of RuvRuv as zero and evaluate s, the dimensionless scale factor, from

sa(RuVR ) = (Ruv ) . In this way, we find that the b, lns term is
v Now Rvleur ’ i

dominant in Eq. (6) during the GUT era.

If the scalar field coupling constants & approach their conformal values
of 1/6, or if no scalar fields are present, then the values of the ui are
such that the terms quadratic in the curvature in the gravitational
Lagrangian take the form

oBYS

=AC C BE. (7)

Lquad oByS +

Here C is the Weyl tensor and E is the integrand of the Euler character-

aByS
istic, a topological invariant. The surprising absence of an independent
term proportional to R2 in Eq. (7) implies that the contribution of these
quadratic terms to the gravitational field equations is conformally invariant
at high curvature. The values of A(s) and B(s) in Eq. (7) depend on the
numbers of different fields in the particular GUT under consideration. We
find that, regardless of these numbers, B is positive and A is negative.
Lagrangians of the form of Eq. (7) have been considered as candidates for a
possible fundamental gravitational Lagrangian in theories of induced

, . 8
gravitation. »9

If Eq. (7) were to be adopted as a fundamental gravitational
action, then the negativity of A would insure convergence of the generating
functional for metrics of Riemannian signature.

Finally, the effective coupling constants E¢ and £H, which appear in
terms such as £RH+H linking the Higgs scalars to the scalar curvature, are
found to approach the value of 1/6 in the fully asymptotically free theories.

Thus, at high curvature the effective gravitational and matter equations of

motion appear to be dominated by conformally invariant terms. This behavior



will suppress particle creation by isotropically expanding universes.lo In
other SU(5) GUT's in which the Higgs self-couplings are not asymptotically
free, a detailed analysis of the behavior of the various couplings in the
theory will be necessary before one can determine if the effective £ coupling

constants approach the value of 1/6.
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