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Summary

A one-electron atom is considered in a general curved spacetime.
The Hamiltonian of the Dirac equation is written in Fermi normal
coordinates, including all interaction terms of first order in the
Riemann tensor of the spacetime. Expressions are obtained for

the shifts in various atomic energy levels caused by the curvature.
There is a possibility that these shifts would be observable in

the spectrum of Hydrogen falling into small black holes (radius

about 10_3 cm) left over from the early universe.
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An atom placed in a strong gravitational field will be distorted by its
interaction with the local curvature of spacetime. As a result of this inter-
action, a nearby observer at rest with respect to the atom would see a change
in its spectrum. The shift in energy of each atomic level would depend on the
Riemann curvature tensor at the position of atom. These shifts would not be
the same for all energy levels. Thus, in principle, the atomic spectrum
carries unambiguous information about the local curvature at the position of
the atom. This effect would be appreciable only in regions of large curvature.
For example, one finds that for the energy level shifts in Hydrogen to be of
the order of the Lamb shift (4.4 x 10—6 eV), the characteristic radius of
curvature of spacetime at the position of the atom would have to be about
1073 cm.

An observer far from the atom would see additional cosmological, gravita-
tional, and Doppler shifts of the spectral lines. These shifts would be the
same for all spectral lines, and could thus be separated from the shifts
produced by the curvature at the position of the atom. Hence, from the
observed spectrum, one could deduce the shifts in the proper energy levels of
the atom caused by the local curvature. I have recently undertaken the
calculation of these energy level shifts for a one-electron atom in an
arbitrary curved spacetime. In this essay, I will describe the calculation
and give the results for a number of energy levels.

The calculation of the energy levels of a one-electron atom in curved
spacetime is a fundamental problem, which involves interesting complications
of a theoretical nature. There are contradictory conclusions in the literature,
and to my knowledge no one has given explicit expressions for the cnergy level
shifts, as I do here. A critique of the previous literature, including refer-
ences, is given by Audretsch and Schafer, who considered the Hydrogen atom in

certain cosmological metrics [1].



I assume that the one-electron atom is governed by the Dirac equation

generalized to curved spacetime. That equation is [2,3]
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where
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and VU denotes the covariant derivative acting on the four component spinor
field Y(x). Minimal coupling to the electromagnetic field is included in the
definition of Vu. To good approximation, one can take the atom to be in free
fall along a geodesic, G, of the spacetime during the time required for an
atomic transition. It is convenient to use coordinates which are locally
inertial or normal at the position of the atom. The most appropriate set of
normal coordinates for dealing with a problem involving energy levels are
Fermi normal coordinates [4]. They are normal along the path of the atom, and
therefore remain normal during the entire emission process.

In Fermi normal coordinates, each spacelike hypersurface of constant x°
is generated by the set of spacelike geodesics normal at a point to the time-
like geodesic G along which the atom is falling. The time x° of an event in
the hypersurface is the proper time along G at the point where it intersects
the hypersurface. For an arbitrary spacetime, the metric in these coordinates

takes the following form, to first order in the Riemann tensor [5,6]:
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where Latin indices range from 1 to 3, and R v is evaluated at the center of
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mass or energy of the atom, which is taken to be the spatial origin. Thus
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Ruvko is a function of x . I assume that on an atomic time scale the time

rate of change of the Riemann tensor, as measured along the spacetime path of

the atom, is sufficiently slow that time derivatives of R can be neglected.
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This condition is necessary for well defined energy levels to exist.



The Dirac equation can be put into the Hamiltonian form (withh = ¢ = 1):
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where the [’ are the spinor affine connections, including a term —ieAU, where
e is the magnitude of the electron charge and AU is the electromagnetic vector

potential. After a very long calculation, I find that in Fermi normal coordin-

ates the Hamiltonian of the one-electron atom is

H = Ho + HI , (6)
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where ¢ = Ze2 (Z is the atomic number of the nucleus), m is the reduced mass,
and the ai and B are the standard Dirac matrices. This result contains all
terms of first order in the curvature tensor, including the corrections to the
electromagnetic field.

One can check by direct calculation that H of Eq. (6) is Hermitian with



respect to the conserved scalar product
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This Hermiticity implies that the eigenvalues of H are real. On the other

hand, neither Ho nor H. is Hermitian with respect to the scalar product of Eq.

I
(9). Therefore, one must exercise care in developing the perturbation theory
of stationary states (including degeneracy) based on the flat spacetime rela-
tivistic Hamiltonian Ho. Rather than go into the details here, let me summarize
the results to date.

Using the known exact spinor solutions [7] of the eigenvalue problem of

HO, I find after lengthy calculation that, to first order in the curvature,

both of the degenerate 1S, levels are shifted by the same amount:
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This includes all terms linear in R and is valid to all orders in [. To
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higher order in the curvature, the lS,/2 levels will be shifted by different
amounts.

The ZSl/2 and 2P1/2 eigenstates of HO are four-fold degenerate. One finds
that, to lowest order in g, the 281/2 and 2P,/2 states are not mixed by the
perturbation HI. The energy of the 281/2 states is separated from that of the
2P1/2 states, and each of the resulting levels is two-fold degenerate. The

energy shifts of those states, to lowest order in ¢, are
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It follows that the splitting of the ?_Sl/2 and ZP,/2 levels in Hydrogen caused by
the curvature will be of the same order as that caused by the Lamb shift
(4.4 x 10—6 eV) when the characteristic radius of curvature, D, of the space-
time is about 10—3 cm. The above results are valid when the energy shifts
caused by the curvature are smaller than the relativistic fine structure, as
would be the case in most gravitational fields.

When the curvature is sufficiently great (D < 10_4 cm) that the energy
shifts are larger than the relativistic fine structure, one can work in the
non-relativistic limit. In the non-relativistic regime, I find the following

shifts for the 1S, 2S5, and 2P levels:
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where the x, y, and z directions of the normal coordinates have been chosen

such that Roioj is diagonal at the origin. For example, in the Schwarzschild
metric with the x-axis of the normal coordinates in the radial direction, one

has [5] R = 2Mr-3, R = R = —Mr—3, where M is the Schwarzschild
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mass and r, is the value of the Schwarzschild radial coordinate at the position
of the atom. In future work, these results will be extended in both the non-

relativistic and relativistic regimes.
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The energy shifts, E , obtained above are those which would be measured

by a detector located near the atom and at rest relative to the atom. A dis-

tant observer could, in principle, deduce these shifts, E(l)
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spectrum because the E are not the same for all energy levels. The calcu-
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lated values of the E are independent of the theory by which the curvature

, from the observed

tensor Ruvkc of the spacetime is generated. Within the context of general



relativity, one may possibly be able to observe these effects in the spectrum
of Hydrogen falling into a small black hole (xadius about 10"3 cm) left over
from the early stages of the universe. Heating of the infalling gas, and the
intrinsic temperature of the black hole will produce a thermal broadening of
the spectral lines, which will limit the resolution of the observations.
Nevertheless, there is a possibility that these shifts can be observed, in

which case they would serve to identify such black holes.
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