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Abstract

The principle of equivalence implies that gravity affects the light cone
(causal) structure of the space-time. It follews that there will exist ob-
servers (in any space-time) who do.not have access to regions of space-time
bounded by horizons. Since physical theories in a given coordinate system
must be formulated entirely in terms of variables which an observer using
that coordinate system can access, gravitational action functional must
contain a foliation dependent surface term which encodes the information
inaccessible to the particular observer. I show that: (i) It is possible to
determine the nature of this surface term from general symmetry consid-
erations and prove that the entropy of any horizon is proportional to its
arca. (ii) The gravitational action can be determined using a differential
geometric identity related to this surface term. The dynamics of spacetime
is dictated by the nature of quantum entanglements across the horizons
and the flow of information, making gravity inherently quantum mechan-
ical at all scales. (iii) In static space-times, the action for gravity can be
given a purely thermodynamic interpretation and the Einstein equations
have a formal similarity to laws of thermodynamics. (iv) The horizon area
must be quantized with Ayorizon = (87Gh/c®)m with m = 1,2,--- in the
semi-classical limit. '

The principle of equivalence makes it is possible to to define a local inertial
frame around any event P in which the laws of special relativity are valid.
This allows one to determine the interaction of gravity with other fields by
expressing the laws in a generally covariant manner in the local inertial frame
and then extending them to curved space-time. An immediate consequence
is the effect of gravity on light rays which determine the causal structure of
spacetime and restrict the flow of information. A region of spacetime, described
in some coordinate system with a non-trivial metric tensor gq,(z*), could have a
light cone structure such that information about one sub-region is not accessible
to observers in another region. It should be stressed that such a limitation is
always observer/coordinate dependent. To appreciate this fact, let us begin
by noting that the freedom of choice of the coordinates allows 4 out of 10
components of the metric tensor to be pre-gpecified, which we shall take to
be goo = N2, goo = Nu. (We use the signaiure (+,—, —,—) and units with
G = h = ¢ = 1; the Latin indices vary over 0-3, while the Greek indices
cover 1-3.) These four variables allow us to characterize the observer-dependent

information. For example, with the choice N =1, N, = 0,943 = —0qp, the x =
constant trajectories correspond to a class of inertial observers in flat spacetime
while with N = (az)?, Ny = 0,903 = —dap the x = constant trajectories



represent a class of accelerated observers with a horizon at z = 0.  We only
need to change the form of N to make this transition in which a class of time-
like trajectories, x = constant, acquire a horizon. Similarly observers plunging
into a black hole will find it natural to describe the Schwarzschild metric in the
synchronous gauge with vV = 1, N, = 0 (see e.g., ref. [1]) in which they can
indeed access the information contained inside the horizon. The less masochistic
observers will use a more standard foliation which has N? = (1 — 2M/r) and
the surface N = 0 will act as the horizon which restricts the flow of information
from 7 < 2M to the observers at r > 2M. :

This aspect, viz. that different observers [defined as different families of
timelike curves] may have access to different regions of space-time and hence
differing amount of information, introduces a very new feature into physics. It is
now necessary to ensure that physical theories in a given coordinate system are
formulated entirely in terms of the variables that an observer using that coordi-
nate system can access. This “principle of effective theory” is analogous to the
renormalization group arguments used in high energy physics which “protects”
the low energy theories from the unknown complications of the high energy sec-

or. For example, one can use QED to predict results at, say, 10 GeV without

worrying about the structure of the theory at 10!° GeV, as long as one uses
coupling constants and variables defined around 10 GeV and determined obser-
vationally. In this case, one invokes the effective field theory approach in the
momentum space. We can introduce the same reasoning in coordinate space and
demand—for example—that the observed physics outside a black hole horizon
must not depend on the unobservable processes beyond the horizon.

In fact, this is a natural extension of a more conventional procedure used
in flat spacetime physics. Let us recall that, in standard description of flat
spacetime physics, one often divides the spacetime by a space-like surface ¢ =
ty=constant. Given the necessary information on this surface, one can predict
the evolution for t > ¢, without knowing the details at t < t;. In the case of
curved spacetime with horizon, similar considerations apply. For example, if the
spacetime contains a Schwarzschild black hole, say, then the light cone structure
guarantees that the processes inside the black hole horizon cannot affect the
outside events classically. What makes our demand non trivial is the fact that
the situation in quantum theory is quite different. Quantum fluctuations of fields
[especially gravity, treated as spin-2 modes propagating in the classical metric]
will have nontrivial correlations across the horizon and will lead to entanglement
of modes across the horizon. Our principle of effective theory states that it must
be possible to “protect” the physical processes outside the horizon from such
effects influencing it across the horizon. Since the horizon surface is the only
common element to inside and outside regions, the effect of these entanglements
across a horizon can only appear as a surface term in the action. Hence it is
an inevitable consequence of principle of equivalence that the action functional
describing gravity must contain certain boundary terms which are capable of
encoding the information equivalent to that present beyond the horizon. This
relic of quantum entanglements will survive in the classical limit but — being
a surface term — will not affect the equations of motion.



In order to provide a local, Lagrangian, description of physics this boundary
term must be expressible as an integral of a four-divergence, allowing us to write
the action functional for gravity formally as

.

Agrz\v - /(141'\/ -9 Lgrav = /d/lw\/ -9 (Lbulk + VLVI) = Abl;lk + Asurface (1)

where V17 = (—g)~1/20,[(—g)"/?V?] irrespective of whether V* is a genuine
four vector or not. In fact, since different observers will have different levels
of access to information, we do expect Agurrace t0 depend on the foliation of
spacetime. On the other hand, since the overall dynamics should be the same
for all obgervers, Agrav should be a scalar. It follows that neither Apyx nor
Asurface are covariant but their sum should be a covariant scalar. As we shall
see, the fact that such a relic of quantum microstructure, Asyrface, Must exist,
encoding the entanglements across the horizon, is powerful enough to determine
the the form of action functional Agay and the bulk dynamics of spacetime in
classical limit ! (In fact, we will see that the concept of classical limit of quantum
gravity is very nontrivial and cannot be obtained by a naive A — 0 rule). The
dynamics of spacetime is dictated by the nature of quantum entanglements
across the horizons and the microscopic flow of information, making gravity
inherently quantum mechanical at all scales in a precise manner.

Let us now determine the form of Agyrrace. The horizon for a class of observers
arises in a specific gauge and resultant Agyrface Will in general depend on the
gauge variables NV, N,. Among these, the lapse function N plays a more impor-
tant role than N,. To see this explicitly, let us start with a spacetime described
in the synchronous gauge (see [1]; section 97) in which N = 1, N, = 0. Consider
now the infinitesimal transformations t — ¢+ ¢(t, z%); x® — & +£*(¢t, z%) with
the condition gop€® = —(d¢/dz*). Such transformations maintain N = 0 but
change N from N = 1 to N = (1 + ¢), [as well as the form of gas); this, in
turn, should change the value of Agyrface- In what follows, we shall set N, =0
without loss of generality and our results are independent of this assumption.
We next introduce a (1 + 3) foliation with the standard notation for the metric
components (goo = N2, goa = Na)- Let u* = (N~1,0,0,0) be the four-velocity
of observers corresponding to this foliation, i.e. the normal to the foliation, and
let a! = ujVjui be the related acceleration. Let K., = —V,u, + ugap be the
extrinsic curvature of the foliation, with K = K! = —V,u’.

Given this structure, we can list all possible vector fields V¢ which can be
used in (1). This vector has to be built out of u, g, and the covariant derivative
operator V; acting only once. The last restriction arises because the equations of
motion should be of no order higher than two. Given these conditions, (i) there
is only one vector field — viz., the u? itself — which has no derivatives and
(ii) only three vectors (uw/V u’,uw! Viu;,u'V/u;) which are linear in covariant
derivative operator. The first one is the acceleration a' = u/V;u’; the second
identically vanishes since u/ has unit norm; the third can be written as —uK.
Thus V¥ in the surface term must be a linear combination of v, 'K and a’.



The corresponding term in the action must have the form
Asur(ace == /d4.’[ V —gvivi = /d/l-T Vv —gvi [)\Uul + /\lKui + /\2ai] (2)

where A’s are numerical constants to be determined.

Let the region of integration be a four volume V bounded by two space-like
surfaces ¥, and ¥y and two time-like surfaces S and S;. The space-like surfaces
are constant time slices with normals u?, and the time-like surfaces have normals
n' d@nd we shall choose n;u’ = 0. The induced metric on the space-like surface
¥ is hap = gap — UalUp, while the induced metric on the time-like surface S is
Yab = Gab + nanp- These two surfaces intersect on a two-dimensional surface Q,
with the induced metric g5 = hap + naTe = Gab — UsUp + NeNp. In this foliation,
the first two terms of (2) contribute only on the ¢t = constant hyper-surfaces (3,
and ¥,) while the third term is the one which contributes on a horizon (which
we shall treat as the null limit of a time-like surface S, like the limit r — 2M +
in the black hole spacetime). Hence we get, on the horizon,-

Agurtace = Ao / d'c =g Viai = A / dt / &z Ny/[o|(naa®)  (3)
S

Further, in any static spacetime with a horizon: (i) The integration over ¢ be-
comes multiplication by 8 = 27 /k where & is the surface gravity of the horizon,
since there is a natural periodicity in the Euclidean sector. (ii) As the surface
S approaches the horizon, the quantity N(a;n!) tends to x which is constant
over the horizon [2]. Using Sk = 27, the surface term gives, on the horizon, the:
contribution )

B8
Agurface = )\zn/ dt/dzz o =2nAy (4)
0

where Ag is the area of the horizon. We thus arrive at the conclusion that the
nformation blocked by a horizon, and encoded in the surface term, must be pro-
portional to the area of the horizon. Taking into consideration the non compact
horizons, like the Rindler horizon, we may state that the entropy [or the infor-
mation content] per unit area of the horizon is a constant related to . Writing
Ay = (1/87Ap), where Ap is a fundamental constant with the dimensions of
area, the entropy associated with the horizon will be Sy = (1/4)(Ag/Ap).

Having determined the form of Agyrface We now turn to the nature of Agray
and Apyk. We need to express the Lagrangian V,;V*' as a difference between
two Lagrangians Lgrqy and Ly such that: (a) Lyrey is a generally covariant
scalar. (b) Lpyx 1s utmost quadratic in the time derivatives of the metric tensor.
(c) Neither Lgray nor Ly should contain four divergences since such terms
are already taken into account in Lgyrrace- This is in fact just an exercise in
differential geometry. To do this formally, we shall first write the sum [A; Ku® +
Aza + Aou'] as [(Ku® + a') /87 Ap + A3 Ku' + Aou'] where A\3 = A} — (87Ap) ™!
is another constant. We next note that there is a differential geometric identity
(see e.g., [3]) :

2V (Ku' +a') = R~ PR — Kot K% + KK} (5)



where R and >R are the scalar curvatures of the spacetime and the ¢ = constant
surfaces respectively. We thus find that

Lsurtace = SWAPVi [Ku’ =+ ai] + Vi (/\3[(ul + )\oul)
R 1

= Tords " TorAs PR - KK + KSKP] + Vi (A Ku' + Aou')

It follows that the Lagrangian V;V? can be expressed as a difference between
two Lagrangians Lgrq, = (R/167Ap) = Lgy and

Lowk = PR — KaK* + K{K}] = Lapm (6) .

167 Ap
with the necessary properties (a), (b), (c) listed above, if and only if A3 = Ao = 0.
The gravitational action Ay, is just the Einstein-Hilbert action while Apyy is
the standard ADM action. No other possibilities exist (except for a trivial
addition of a cosmological constant). We see that the structure of gravitational
action can be determined uniquely using the form of Agy face Wwhich — on using
the known form of A’s —— turns out to be the integral of V([ u + a*).

When unobserved degrees of freedom inside the horizon are integrated out,
the resulting effective theory will have the surviving term Agyrrace Of (3). This
will contribute a phase factor exp(iAsurface) to the path integral amplitude out-
side the horizon. Though such a term is innocuous classically, it changes the
quantum amplitude for processes. The principle of effective theory demands
that this should not happen which, in turn, requires the quantization condi-
tion Agyrface = 277. From (4) we find that the areas of all horizons should be
quantized in terms of a fundamental area element in the WKB limit [5] leading
to
A = (87 Ap) 7, 7=1,2,3,.. (N

The boundary term-—which is not generally covariant—may be different for
different observers, but the corresponding operators will not commute thereby
eliminating any possible contradiction. (This is analogous to the fact that, in
quantum mechanics, the component of angular momentum J, measured along
any axis is quantized irrespective of the orientation of the axis.). In fact, detailed
analysis shows that the horizon area is analogous to J, (and quantized in integer
units, 7) while the area operator itself is like J? and has the spectrum j(j + 1).

The fact that the information content entangled across a horizon is propor-
tional to the area of the horizon arises very naturally in the above derivation.
This, in turn, shows that the fundamental constant characterizing gravity is the
quantum of area Ap which can hold approximately one bit of information. (It
is the introduction of a quantity with dimensions of area, which frees us from
having to worry about h; the only quantum mechanical input we used is the
periodicity in Euclidean time.) What is more, the conventional gravitational
constant is given by G = Apc3/h and will diverge when i — 0 ! This is strik-
ingly reminiscent of the structure of bulk matter made of atoms. Though one

[



can describe bulk matter using various elastic constants etc., such a description
cannot be strictly considered as the i — 0 limit of quantum mechanics — since
no atomic system can exist in this limit. Similarly, spacetime and gravity are

- inherently quantum mechanical just as bulk solids are.

This implies that spacetime dynamics is like the thermodynamic limit in
solid state physics. In fact, this paradigm arises very naturally for any static
spacetiine with a horizon. Such a spacetime has a metric

ds? = N*(x) dt* — yap(x) dz®daP | (8)

with the horizon occurring at the surface NV = 0. In this case, we have R =
3R + 2V;a!, where a; = (0,00 N/N) is the acceleration of x = constant world
lines. Then, limiting the time integration to [0, 8], the gravitational action has
the explicitly thermodynamic form h

. _ '8 3 3 'B / 2 ay — n
Agrav = 1671'./41?/1)de\/’7 R+877Ap avdSN(naa Y=BE-S, (9)

In the Euclidean sector, the integral in the first term is proportional to energy
(in the sense of spatial integral of the ADM Hamiltonian), and the second term is
proportional to entropy in the presence of a horizon. (The signs are correct in the«
Euclidean sector with the signature we are using). Agzr,, thus indeed represents
the free energy of the space-time, and various thermodynamic identities follow
from its variation [4]. )

In summary, the basic fact that gravity can make regions inaccessible implies
a loss of information, which — in turn — requires a surface term in the action
describing the entropy. The physics of spacetime, like that of any other system
with non-zero entropy, now needs to be obtained by extremising the free energy
(and not the energy). The action has two naturally arising terms, neither of
which can be covariant, since different foliations will lead to different levels
of information loss. But the sum of the two terms is indeed covariant. The
dynamics of spacetime is governed by the variation of the information - energy

-content and quantum entanglements across tlie horizon under small variations

of the metric.

References

[1] L.D.Landau, E.M.Lifshitz, Classical theory of fields, Pergamon (1975),
p.310, eq.(102.3).

[2] See for example, J.D. Brown, Phys. Rev. D 52 (1995) 7011, Appendix B.

[3] T. Padmanabhan, (2002) Gravity from spacetime thermodynarfiics in press;
gr-qc/0209088. ’

=

T. Padmanabhan, Class. Quan. Grav. 19 (2002) 5387, gr-qc/0204019.

c

T.Padmanabhan, Apoorva Patel (2003) Semiclassical quantization of grav-
ity I Entropy of horizons and the area spectrum (unpublished)



