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Abstract

The effect of quantum fluctuations of gravity on
the measurement of proper distances is considered. It
is shown that, when the length scales are of the oraer
'of Planck length, the concept of a unique distance
between points ceases to exist. It is also shown that
the quantum expectation value of the prbper length is

bounded from below by Planck length in any space-time.



1. Flat space as gravitational vacuum

Classical general relativity identifies gravity with
space-time curvature. In this picture the proper (physical)

distance between two events x' and x' + dx® is given by,

2 k

_ i
ds” = gik(x) dx~ dx (1)
where 95k is determined by the Einstein's equations. In
the absence of gravitational field, gi;x Aassumes the
familiar flat space value Nik = dia (1, -1, -1, -1) and
we get,

as? = ny, axt ax® = at? - ax® - ay? - a2’ (2)

It is tacitly assuméd in the classical theory that Ik
at any single event xi can be measured to arbitrary level
of accuracy. Thus the proper lengths in (1) and (2) can be
determined as accurately as one wants. This immediately

leads to the conclusion that,

Lt ds® = 0 (3)
i i
X >y
where . yl = x* + ax?t. This, rather trivial, result states

that the proper interval goes to zero as the events approach

each other.



Classical gravity, however; is only an approximation
to quantum gravity. The flat space-time should be more
properly considered to be the vacuum state of quantum
gravity. The metric tensor g, becomes a quantum field
and is bedevilled by the quantum fluctuations. Even in the
flat space-time the vacuum fluctuations of gravity will be

present. Thus, it is no longer possible to measure the value

of 'gik at a single event x> and obtain a unique value
for the space-time interval in (1) or (2). A more

detailed, probabilistic description is required.

In particular, we expect the quantum fluctuations to
grow very large at small distances. Therefore, it is
not clear how the result in (3) would be modified when the
fluctuations in the metric tensor are taken into account.
We shall show below how these questions can be settled

in a simple model for guantum gravity.

2. Quantum conformal fluctuations

Considerable progress can be made in discussing the
quantum dynamics of gravitational field, if the attention is
confined to the conformal degree of freedom of gravity //(1,2,3)//.

Quantum gravity can be approached through the path integral,

K = JE}gik exp 1S [gik]’ (4)



where,

- I R /=g a%x . (5)
121)

1

- o at
S = 167G J R /-g d'x

Most of the contributions to the path integral are expected
to arise from the classical solution Iix = aik (say). 1In
considering the quantum conformal fluctuations, one

evaluates the path ihtegral in (4) over a class of metrics which

are conformal to Eik : i.e. we take
g = [ 1+ ¢(x)12 g5 . (6)
In terms of ¢ , vthe path integral becomes,
K = Ji} ¢ exp {- ;if J [¢i¢i - % R(1 + ¢)2] /:g—a4x} (7)
p

which can be evaluated in closed form due to the quadratic
nature of the ¢ dependence. Detailed discussion of this
approach, its relevance to quantum gravity etc. can be found
| in references cited previously //(1,2,3)//and will not be

repeated here,

In particular, the above formalism can be used to
answer the following question : What is the probability that the
conformal fluctuations has a given value ¢ (x) in the

gravitational vacuum (flat space)? The answer is given by,
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[6(x)] = N exp (-2 25 k| |q.|2)
(2.")3 -
Vo (x) Ve (y)
= N exp (- 1 I d3§ ddy = ) (8)
- 4q? Lg - ‘& f‘zlz
where
ikx d3~]~(~
$(x) = q, e ~ = . (9)
- k (2n)3

The expression (8) denotes the square of the 'ground\state
wave functional' for gravity and is derived and discussed
in references //(4,5)//.The time independence of # reflects
the fact that ground state is a stationary state [For the
corresponding expression in electrodynamics see //(6,7)//].
The vacuum fluctuations of gravity can be studied using this

probability functional.

3. Quantum fluctuations and length measurements.

Let us see how the fluctuations of the conformal factor
affect the measurement of proper length between points in
space x and y (at time t) in flat space. To do this, one
has to make a measurement of the fluctuating field ¢ (x) in (7).
Consider an experiment which achieves this measurement with a
spatial resolution of L (say). In other words, the

measurement cannot distinguish points x and y as distinct if

A



|x - y| < L. (An ideal experiment, of course, is a

~ ey

special case of L = 0). If the sensitivity profile of the

set up is denoted by f(£) then, we will actually be

measuring the field ¢(xX) "coarse-grained" over the scale L :

¢f(§) = I ¢(§ + r) f(f) d3£ . (10)

(The function f is taken to be zero for |r| > L and

is of the order of unity for |r| < L. Thus the experiment

does not distinguish between points x and x + r when
|r| <L.) The quantity of interest, is the probability that s

has a particular value n fsay). Since the probability

distribution for ¢(x) 1is given by (8), this can be

easily seen to be given by,

Alog=nl = [Deste, - mPLo)
o0y
= NI 5T IB ¢$(x) exp 1A [¢'f - nJj
x exp (- —2 J a’x ady ————T"'Vq’ |2).
X - Y

4n212
p Ll o~

Performing the integrations (for details, see ref.8), we

get,

n? (12)




with,

d3k lf(,)&)'Z

2 o g Y .
’ Lp[ s ine (3

(e od

Suppose we take f(r) to be the gaussian sensitivity

profile,
[x]|?
£(r) = (=232 exp (- 2—) (14)
~ 2nL2 2L2
then, from (13) we get,
2 2 4’k 1 | 2 Eé
A = L = f (k) = . (15)
p ‘(2“)3 m > l L2

For any other choice of f(x) with a characteristic width

of L, the answer will be of the same order : A2a Lé/Lz.

Thus as long as one confines oneself to length
measurements averaged over many Planck lengths, (i.e. for
I,>>Lp), A is almost zero and the probability in (12) is
sharply peaked at n = 0. The physical distance between
the two events (§,X) is hardly affected by quantum
fluctuations. However as the accuracy of measurement
increases (L =+ 0), the dispersion in guantum fluctuations
grow and length determinations become fuzzy. Using (12)
and (6), one can show that the probability that two points

(x,y) are separated by a proper distance R is given by,



2
1/2 (R - R,)

P(R) = ( L) / exp { - — 2 (16)
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whefe,

LZ

= - . 2 _ g2 (2
R, = ‘f .XI ; o RS (L2 . (17)

To have a well defined concept of length between two points,
one must have ¢?2 << Rg implying L>> Lp. As the
measurement becomes more and more accurate, we can only
talk about the probability for a particular value for the
1ength.' The concept of definite proper length breaks down
at L ¥ L,- Equation (16) is the main result of this

analysis.

4., Lower bound to proper length

Classically nothing prevents one from considering
two events that are arbitrarily close; the proper lenéth
tends to zero in this limit. However it is physically
meaningless to talk about distances below the resolution
limit L. If this resolution 1limit is taken to zero, then

equation (16) predicts infinite uncertainty in the proper length.

Instead of considering the fluctuations in the conformal

factor, one may look at the expectation value of the line



interval

k k

<0lds?]|0>z< g, (x) > dxt dx® = (1 +<¢2(x)>) dx' dx (18)

k-
However, it is well known that <¢?> diverges for quantum fields.
Also we notice that ds? involves for it definition two
events x° and yl = x + dx*. It is better to consider
<$2(x)> as the limit,
2 = Lt v
<eZ(x) > = < o(x)ely)>. (19)

In flat space, the limiting distance between two space points

x and y (at some time t, say) is given by,

M

Lt 22(x,y) = Lt |x-y|? = 0 (20)
X >y ¥ X >y

~~ ~~

in the classical limit. When gquantum fluctuations are

included, this is replaced by,

Lt < 22(x,y)>= Lt (1 +<¢ (x,t)é(y,t)>) [|x - y|? (21)
x>y -~ X >y ~ ™~ Y e

A e

The expectation value can be evaluated by standard field theory

techniques and is given by, (see ref. 8)

< ¢(§Jt) ¢(y,t)> = ——-—F— (22)



Therefore,
. 4'n2L2 2
Lt < ¢2(x,y) >= Lt (1 + —2F ) |x-y|’ (23)
x+y °7 X >y |x - y[2 -~

= 4ﬂ2L;
In other words, the expectation value of the proper length

between two events is bounded at Planck length! This
is another simple conclusion that follows from the study

of quantum conformal fluctuations.

This result is far more general than indicated by
the derivation above. First of all, for any two events
x* and x' + et , 1in flat space, the expectation

value has the form,

4n2L2
< 0] é(x +¢€) ¢(x) |0 >= - ——I—E* . (24)

(e7¢e;)

i

Thus,
4172L2 i
Lt < 22(x, x+e)> = Lt (1 - ~I-E—)s e. = -4w2L2 . (25)
e » 0 e + 0 e €y 1 p

[ The minus sign shows that the lower bound arises
from the limiting value of spacelike separations]. The
result can also be generalized to arbitrary curved space-time

because of the following fact : In any space-time,
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47212
Lt < ¢(x)ely) > = - —TB (26)
X+y : S

where sz is proper interval between x and y (see
e.g. ref.9). It is clear that the analysis can be carried

over to any space-time.

This result has important implications for the
ultraviolet divergences which arise in the quantum theory
of fields. Consider the Green's function for a massless
free scalar field ¢(x) in flat space. It is usually

taken to be, [ § 1is the action for the scalar field ],

1]

GO(XIY)

[ Duwix) v (x)y(y) exp % S [y¢]. (27)

However, we have just seen that even flat space undergoes
vacuum fluctuations of gravity. Thus one should average

Go(x,y) over the fluctuations of the metric tensor,

obtaining,
G(x,y) = < G (x,y)>= [9 ¢(X)J&w(x) exp i(S + Sg)- (28)
Since
2
Gy (x,y) = —21 (29)
(x - y)°©

we get,
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2 2 ’
Gix,y) & —4° - 4 . (30)

< (x-y)? > (x-y) 2 - 4w2LS

In other words, the Green's function is finite at the
coincidence limit x = y! As is well known, this feature
can eliminate the ultraviolet divergences in quantum
theory. [ This is equivalent to a momentum space cut off
at Planck energy ]. Admittedly the argquments have to be
refined further; but the physics is transparent in (23)

itself.

It was always felt that Planck length should play a
fundamental role in gquantum gravity. Our analysis
confirms this thought and shows that Planck length plays a
crucial role in all physics. It provides a lower bound to

all proper length scales.
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