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ABSTRACT

We show that a self-similar general relativistic spherical collapse
of a perfect fluid with an adiabatic equation of state p = (v — 1)p and
low enough ~ values, results in a naked singularity. The singularity is
tangent to an event horizon which surrounds a massive singularity and the
redshift along a null geodesic from the singularity to an external observer is
infinite. We believe that this is the most serious counter example to cosmic

censorship that was obtained so far.



The cosmic censorship conjectures! is generally accepted as the most important
current open question in classical general relativity?. This conjecture suggests that a
spacetime singularity, which develops in the future of a regular Cauchy hypersurface cannot
be seen by any observer (strong version) or at least by an external observer (weak version).
If the weak version of the cosmic censorship conjecture is true predictability is saved, at
least in the region external to the event horizon, even when singularities form. If tﬁe strong
version is true, predictability is saved everywhere. By now, several authors have described
counter examples? 8 to the cosmic censorship hypothesis. Some examples result from
aphysical initial data®=8. The other examples deal mostly with pressureless matter (either
dust of null fluid) and include either shell crossing (which can also appear with nonzero but
bound pressure®) or shell focusing singularities. The first can be disregarded if we allow é
function distribution. The second are more difficult to get rid off and Eardley? has recently
suggested that we should either avoid pressureless matter or treat dust self-consistantly
using the collisionless Boltzman equation in order to rule out these singularities.

We have investigate the self-similar spherical collapse of a perfect fluid with an
adiabatic equation of state p = (v —1)p. We find that unbounded pressure (but with « not
much larger than 1) does not prevent the appearance of naked singularities . This solution
increases significantly the range of matter fields that should be ruled out in order that the
cosmic censorship hypothesis will hold. In this essay we describe the essential features of
the solution, various details we be given elsewhere.

To obtain a self similar solution of the spherical field equations® we define z = r/|t|
and look for a solution of the form: u"(r,t) = u"(z) ; g, (r,t) = g(z) ; gu(r,t) =
gu(z) ; p(r,t) = d(z)/4nt?. Einstein equations® become a set of ordinary differential
equations which determine the initial conditions at t; < 0, that lead to a self-similar
collapse, as well as the dynamics in the domain ¢ > t.

The central density p(0,t) = do/4nt? ,( dy = d(0)) diverges at t = 0 if dy # 0.
This real singularity at (r = 0,t = 0) is a basic feature of the solution (for dy # 0), and
it does not reflect any singularity tn the solution of the self-similar collapse equations. For
some range of the parameter space, null geodesics originating at the singularity reach an
observer at infinity and the singularity is naked.

The self-similar solution has a sonic point, z, (a test particle moving on the world-

line r = |t|z, , moves at the speed of sound a = (y — 1)!/2 relative to the fluid), where
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generally the solution is discontinuous. There exist, however, a discrete set of values of dy ,
for which the solution is regular'®. We choose to discuss here one of these discrete regular
solutions, the general-relativistic equivalent of Penston’s Newtonian solution, which seems

to be the simplest candidate for a naked-singularity.

The solution is characterized by two parameters, v and dy. For a given choice of
these parameters we integrate the field equations numerically, from z = 0 towards z = oo.
Fig. 1 displays a numerical solution for v = 1.01 and dy = 1.438, which correspond to
the special regular solution discussed earlier. To understand the nature of our example it

is sufficient to consider the solution near the origin and at infinity. Near the origin the

solution describes an almost homogeneous, d ~ dy — ﬂ;dﬂ—lj[z‘?"‘(%fy -1) - (2 - é%)]xz,
uniform, u" = —3%1, and almost Newtonian, 2m/r = 1 — g~ Z‘;ﬁl:zzz, collapse. The

solution goes over asymptotically to an isothermal,d ~ de,z72%, 2m/r ~ 1/2+dy —

\ﬂ/z + doo)? — 2doo (1 + yud,), constant velocity, u” &~ —uy, infall. We notice that 2m/r

is small near the origin and that it remains less then unity, even as we approach the singu-
larity at ¢t = 0. In fact, 2m/r < 1 for all x and hence for all » and ¢t < 0. Just like the shell
focusing singularities? this singularity has a Newtonian character. The system remains
almost Newtonian and a black hole does not appear before t=0, i.e. until the singularity
is reached.

The isothermal character of the asymptotic solution means that the total mass
diverges (lim, ,o,2m/r # 0 and the spacetime is not asymptotically flat. In order to
obtain an asymptotically flat spacetime, we introduce a cutoff in the density profile at
rco = |to|z.. Beyond r.g, the density drops smoothly to zero in a finite range. The cutoff
break the self similar nature of the solution: r.(t) divides the spacetime to an inner self-
similar region and an exterior non self-similar one. If r,y is large enough, the cutoff is
beyond the “photonic point”, z,, (where zig,,(z,) = —g1(zp) and the world line r = |t|zp
is null). Perturbations introduced at t = to at r > zp|tg|, cannot influence the singularity
at (r = 0,t = 0). The condition r¢o > |t|z, ensures, therefore, that the singularity, and its
immediate nearby region, are in the inner self-similar part and the cutoff cannot influence

the singularity and the causal structure of the spacetime near it .

To bypass a coordinate singularity (in ¢) on the line t = 0 we transform to comoving
coordinates R, T in which u7 = g}/jg and uR =v? =u® =0 . We map (r = 0,t = 0) to

(R =0,T = 0) and we transform to comoving coordinates at ¢{; < 0 and T; > 0, avoiding
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another coordinate singularity (in T) at T = 0 and obtaining two overlapping, regular
coordinate patches that cover all the spacetime.

In the comoving coordinates we define y = R/T, D = 4npT?, 7 = r/T, such
that grr, grr, D and 7 are functions of y only. Substitution of these definitions into the
comoving spherical collapse equations yields the comoving self similar collapse equations.
The numerical solution for the (R > 0,7 > 0) patch is shown in Fig. 2. The solution
terminates at y, (ys > 0), where there is a real spacetime singularity. Near y, we find that
D =~ Dy(y—ys) "%, grr ~ grrs(y—y,) 277D/ and grp ~ grrs(y—ys) "2/ €737
while 7 ~ 7,(y — ys)z/(6'37) (Ds ,97Ts 9RRs and T, are related by two algebraic equations).
The spherical fluid shells crash into a central r = 0 singularity on the world line y,. For
T > 0, the singularity is ‘massive’ and it is surrounded by an apparent horizon, (where
2m/r = 1). Both the mass of the singularity and the size of the apparent horizon grow
linearly with the comoving time T' (note that lim,_,,, (%’ﬁ) = limy_,,, (27'"7') = Const
and see Figs. 2 and 3). The singularity is spacelike for T > 0 and no photons can escape
from it later than T = 0.

Apriort it is not clear whether photons can escape from the singularity at T = 0.
To answer this question, we look for radially outgoing null geodesics of the form R = yT.
Clearly, such a geodesics exists if and only if F(y) = y’9rr(v)/|9rr(y)| = 1 for some
¥y > ys- The asymptotic expansions (see Fig. 2) show that lim, . F =lim,_,, F = oo.
For v < 7. (7. = 1.0105 ), which we assume in the sequel, F(y) has a minimal value,
F,, <1,and F(y,) = F(y2) = 1. The singularity at (R =0,T = 0) s naked for v < ~,.

R = y;T is a null geodesics from the singularity towards infinity. R = y,T is
the event horizon. In addition to these two special null geodesics, two disjoint families
of radially outgoing null geodesics emerge from the singularity (see Fig. 3): geodesics
between y; and y,, that reach infinity, and geodesics located between y; and y,, that are
trapped by the apparent horizon, and fall into the central singularity. The analysis is
more complicated but the basic causal structure remains unchanged, when we consider
the influence of the cutoff on the null geodesic. The main difference is that with a cutoff
R = y,T is no longer the event horizon and some geodesics of the second family reach
infinity.

Before concluding, we turn to the redshift along the null geodesics that emerge

from the singularity. We find that the redshift from a source located at the center (r=0,
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and 1 < 0) diverges like [r.(t = 0)/]t]]* as ¢ — 0 (where o = YdoGrroo (1 + 2Ud6grro0) )-
Therefore, only singularities with an infinite luminosity can be seen by a distant observer.

So far we have ignored an important fact, which should be kept in mind whenever
we discuss a naked singularity solution. The dynamics of causal future of the singularity
(the domain y < y;), depends on the unknown boundary condition at the singularity,
and is not predictable from the initial data on t3. Our solution is, in fact, based on
an analytic extension of the solution from y > y; into the domain y < y;, and it is
equivalent to the assumption that no perturbations are coming out from the singularity.
Many other solutions (with different boundary conditions) are consistent with the field
equations. One can imagine, for example, that the matter which falls into the central
singularity is immediately reradiated (as a thermal radiation, or Hawking radiation), and
the singularity remains massless. Alternatively one can conceive a solution in which a
shock wave bounces from the singularity in such a way that the singularity immediately
disappears and the shock wave prevents the matter from collapsing further. It should be
interesting to classify systematically all these possibilities.

We have shown that there exist a family of solutions of spherical self-similar collapse
of an adiabatic perfect fluid that include naked singularities. These solutions provide a new
counter example to the Cosmic Censorship hypothesis. These naked singularities resembles
the shell focusing naked singularities that are observed in pressureless collapse, in spite of
the fact that our matter field has a small, but non vanishing and unbound pressure. Clearly
this solution is not sufficient to abandon the cosmic censorship hypothesis. One can think
about a few caveats before doing so. First, the redshift along any null geodesic emerging
from the singularity towards an external observer is infinite, hence energy cannot escape
from this singularity (unless the singularity has an infinite luminosity). Furthermore such
naked singularity occurs only for a relatively low (and possibly aphysical) 4. We might
find physical reasons to rule out such matter sources. Finally, it is not clear if this causal
structure is stable under perturbations and it is possible that these solutions are only of
‘measure zero’ and might be ignored.
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Figure Captions

Fig. 1: Self similar collapse expressed in Schwarzschild coordinates for t < 0 (y = 1.01
and dy = 1.4377): |u"| (solid line), z2d = 4mpr? (dotted line), d (short dashed line), 2m/r
(long dashed line) and |gy| (dashed dotted line). Note that 2m/r < 1 for all x values.

Fig. 2: Self similar collapse in comoving coordinates for T > 0 (v = 1.01 and do = 1.4377):
|u"| (solid line), 100 x 47pr? = 1007% x D, (dotted line), 1000 x D (long dashed dotted line),
2m/r (long dashed line), # = r/T (short dashed dotted line) and F(y) = y%grr(y)/|9rr (¥)|
(short dashed line). Note that 2m/r = 1 at y slightly below y,, where F(y,) = 1.

Fig. 3: A schematic spacetime diagram of the collapse in comoving coordinates. The
singularity at y, is represented by a sawtooth-like line. The apparent horizon is denoted
by ‘ah’. The cutoff is denoted by a long dashed dotted line. Dashed lines denote null
geodesics that are between y; and y,; and escape to infinity. Dotted lines denote null
geodesics that are between y, and y, and fall back into the singularity. The short dashed
and dotted line denotes a geodesics that is between y, and y, and would have fallen into

the singularity, but it escapes to infinity because of the cutoff.
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Figure 3
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