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ABSTRACT

It has been commonly bellieved that there were no absolutely
conserved quantities in the Einstein theory of gravity and that on;y
charge was absolutely conserved in the Einstein-Maxwell theory. It‘is
the purpose of the present note to state that this is wrong and to
describe ten recently discovered absolutely conserved quantities in the
Einstein theory and six conserved quantities in the Eilnstein-Maxwell
theory. These quahtities, though they have a trivial meaning in the
linear theory of gravity, appear to play a fundamental role in the

dynamics of the non-linear gravitational field.



SOME NEW GRAVITATIONALLY CONSERVED QUANTITIES

We shall describe a set of ten recently discovered conservation
lawsl in the Einstein theory of gravitation whose existence had been
previously unsuspected, Although these conserved quantities differ
fundamentally from certain counterparts in the Iinear theory of gravity,
(which are essentially trivial) the linear theory plays an essential
role here in their interpretation. We also parallel the description of
the full aﬁd linear theory with an analogous description of Einstein-
Maxwell theory where there are six new conserved quantities.

As a preliminary there are two mathematical points to be
mentioned., First we define two sets of complete functions on the sphere

(different from the spherical harmonics) as follows;
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Higher type funcﬁions, denoted sYzm’ which are particularly convenieﬁt for
use with spin s fields, can also be defined.

The second point concerns the formalism used. At least in the
flat-space Maxﬁell and linearized gravitational theory one can, instead
of Minkowskian coordinates, use null polar coordinates, polar coordinates
0,¢,r and the retarded time u = t - r. A generalization of this coordinate
system can be introduced in the full theory when the space becomes
asymptotically Minkowskian., The hypersurfaces u = const. remaining null
and outgoing.

When invest;gating radiative solutions of Maxwell's equations it

is often simpler to work with the following complex quantities than with
] andlﬁ;
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¢, = (E + 1B)'m, ¢ = (E + 1B)ec, @, = (E+ 1B)-W .

The vector m and its complex conjugate i are defined from an orthonormal
triad 4, B and ¢ (defined at each point of space) by @ = -r%:_. ( + 18).
2 and D are tangent vectors to the polar coordinate spheres and 2 is along
the radial direction,

In the linear and full theory of gravitation, the quantity analogous
o F“y is the Weyl tensor, Caﬁyaop Just as F
caﬁyb

ViJ and Wij° We define five complex gquantities analogous to the above ¢'s;

I corresponds to (€, B), the

corresponds to two traceless symmetric three dimensioral tensors.

. 7//0 = (VJJ + iwiJ )mimJ, '¢Il = (Vij + iwij)cimj
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The differential equations satisfied by ﬁhe ¢'s and ¥'s can be
integrated aéymptotically without great difficulty. The solutions for all
outgoing waves and thoée incoming waves which concern us have the
asymptotic form;
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This general asymptotic behavior holds rigorously for the full theory and
for the Einstein-Maxwell theery as well as for the linear theories.

The usual conserved‘guantities in the linear theories; namely
charge, mass, and linear and angular momentum, can be given as surface

integrals at fixed u of ¢i, YE and Y2

12 with appropriate siym &5 welghting

factors.
The new conserved quantities can be similarly defined; for the

Maxwell theory they are (in complex form)

F, = ¢i‘ Yoo 40, m=-1, 0, 1,
and for the linear and full theory of gravitation

l —
Gy =f‘1'°__2Y2m iQ, m=-2, -1, 0, 1, 2 .

In the full Einstein-Maxwell theory, the three Fm are still strictly
conserved but the G (as defined above) are no longer conserved but can
be "carried away" by electromagnetic radiation. If the total charge of
the system vanishes, then an electromagnetic contribqtion R, to the vacan
be defined such that the Gy + Ry 1is conserved. The G, constitute a D(2,0)
representation of the homogeneous Lorentz group; they are unchanged.by
translations and by what is known as supertranslations,

To understand the F and Gy it is useful to first investigate their
meaning in the linear theories. It is easy to show (in this case) that
they both vanish for pure retarded fields. In gddition they vanish for

all advanced fields except for the dipole field in Maxwell theory and
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the quadrupole field in the linear gravitational case. In fact if the
time profiles (of advanced time, v = t + r) of the advanced fields behave
as g? + O(v"2) for large v, the F  and G, are proportional to oy. In
other words, in the linear theories, the Fj and G, measure the existence
(in the asymptotic null future) of incoming dipole and quadrupole waves
which are dying out as 1/v,

Initially we believed that this trivial interpretation of the G,
extended to the full theory. However it was here that the non-linearity
of the full theory presented an essentially new situation.

Consider the static or stationary vacuum solutions of the full
theory, where incoming (or outgoing) radiation is absent according to any
reasonable definition - nevertheless, the G, do not vanish. They can be

expressed in terms of the monopole, dipole and gquadrupole moments, m,

Py and Qij’ by the Btandardz relation G, &> KiJs where
K,, = Qg4 - 3pypy + DB
i 1J 1¥J iy -~

The imaginary paxrts of Py and Qij’ are the spin dipole and quadrupole
moments respectively, Kij is a trace free temscor, independent of the
origin with respect to which the Qid and p; are calculated.

This result for the stationary solutions leads to a remarkable
conclusion, Suppose an initially stationary asymmetric body with Kij f 0
becomes spherically symmetric at a finite time later, Since the Qid and
pj must then vanish, K,j must become zero but the vamust still correspond
to the original values of KiJ’ This leads to a time dependent solutibn
containing terms very similar to the incoming waves of the linear theory,
but now presumably back—écattered waves. It will not become stationary in

any finite time, To make it stationary the system would have to develop




moments such that the new Kij would equal the old. We see that the Gy
thus make certain classical stationary states inaccessible in & finite
time from other states.

It appears therefore as if the G, and F; represent in addition to
information about incoming waves, information about the source; the

relative importance of each meaning depending on details in each case,



PHYSICAL IMPLICATIONS

We now have a set of quantities which are absolutely conserved in
asymptotically flat space-times satisfying the appropriate Einstein
equations and which can be measured by an examination of the asymptotic
fields. The only previously known .quantity of this kind was electric
charge. In view of the importance to physics of the cemcept of charge, it
seems not unreasonable to expect that there may be significant physical
consequence of G, and F, conservation, also.

Indeed, the conservation of G, leads immediately to bne interesting
conclusion concerning gravitational radiation. For the first time we have
a rigorous argument which shows that gravitatonal waves emanatiné from an
isolated system must in general undergo back-scattering. Thus a transi-
tion from a stationary state to another state with a different Kij'can
never be achieved with clean-cut waves; the second state never achieves
exact stationarity showing that there must be a residual gravitatioual
disturbance within the light cone of the wave. (The hope had sometimes
been expressed that gravitational waves might in some sense s%rictiy obey
Huygen's principle, i.e. be without tails,

When it comes to examining the role and meaning of the new
conservation laws in actual physical processes, the picture unfortunately
becomes more difficult and obscure., We may speculate on the role of Gy
in the study of massive objects and the question of gravitational collapse,
since there gravitational forces be¢ome significant in comparison with
other forces. We are familiar with the idea of mass-energy conservation
being of great lmportance in virtually any physical situation. Although
conservation of mass-energy in general relativity is not so clear-cut as

it is in special relativity, we can say at least the total mass-energy



of an isolatéd system will be conserved provided we take into account

a (positive) contribution to the energy which resides in the emitted
gravitational waves. Now, in effect, this energy of the gravitational
waves 1s lost to the system owing to the weakness of the gravitational
coupling. During an asymmetrical collapse, large reductions in the mass
of the material system may occur quite rapidly (if calculations based on
the linear theory are to be believed.) Thus, mass-energy conservation
will not effectively be operative at this stage. On the other hand, G
conservation may be expected to be relatively more important since Gy

is not carried away by the waves. It 1s possible that the behavidr of a
collapsing system may be severely restricted by the G, conservation. A
great deal more'Qork needs to be done to see if phe conserved qugntities
do lead to important physical effects in phenomenon of collapse.

An alternate possibility is that the G, and F might play a role
in phenomena on én extremely small scale., One might speculate ag to
whether the conserved quantities lead to the existence of conserved
currents, (as does charge conservation) which might perhaps, act as the
source of undercovered new fields. In the absence of any larger theory;
such as a transformation theory which might derive the conservation laws
by an application of Noetyer's theorem, we must at present leave the

matter here,
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