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Soliton concept in General Relativity

Summary

Bbliton physics has made.considerable progress in solving non-
linear problems. This paper is meant to relate the soliton con~
cept to the stationary axisymmetric vacuum fields in General
Relativitye. We present a functional transformation which, working
as a nonylineér creation operator, generates gravitational fields
of‘isolated sources. When applied to flat space~time ('gravita-
tional vacuum') this operation leads to a non-linear superposition
of an arbitrary number of Kerr particlese

This superposition also includes the Tomimatsu-Sato fields. -

The functional transformations form an infinite-parameter group

which contains the Kinnersley—-Geroch group-as'a Subgroupe
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1e Introduction

Soliton physics has provided us with valuable knowledgé in the
field of non-linear phenomena; We have learned that there are
stable structures formed and maintained by a competition between
dispersion and non-linear feedback. Such solifon structures are
béing investigated in many areas of physics, e;g; in non-linear
optics, plasma physics, and dislocation theory;

It is the purpose of this essay ﬁo relate the soliton concept

to Einsteinian gravity and to report the results achieved in
this way;

Let us consider thé stationary axisymmetric vacuum gra&itational
field of a spinning mass distribution.

In General Relativity, this problem can be described by the

complex Ernst potential £ , which is an axisymmetric solution

of the second-order differential equation

(Re £) Af = (grad T )2 ’ | (1)

where /\ is the Laplacian operator in Euclidean 3-spaces

Before we discuss the axisymmetric class of solutions let us

have a look at two other subclasses of eqe (1)« One of them shall
@f/gg;;\the way on which we can find the wanted axisymmetric
soliton solutions, the other one shall inspire the physical inter-

pretation.



(1) In the case of cylindrical symmetry, in which £ depends

on two Cartesian coordinates, eq{ (1) is equivalent to two ellip-
tic sine;Gordon equations; The usually considered hyperbolic
sine-Gordon equation-has multi-goliton solutions, which can be
constructed by means of successive Bécklundwtransformations;

The point is that the Bidcklund transformation method, which also
épplies to the elliptic type, essentially‘involves algebraic
manipulations. These facts have stimulated the search for a
similllar procedure applicable tb the axisymmetric solutions of

eqe (1)e The search proved successful /1/e

(ii) Newtonian gravitational fields are characterized by Im £=0 ,

in which case eqs (1) reduces to the Laplace equation
A = o (2)

for the real gravitational potential (b = Y2 1n f. Newbonian
theory is very suitable for illustrating the effect of Bicklund
transformations on gravitational fields, and the:study of Newtonian
solitans.(sec;2) will give us valuable hints how to proceed in

Einstein's theory (8ece3).

2. Solitons in Newton's theory

Let q)(z,E) be a known axisymmetric gravitational potential
depending on the cylindrical coordinates ¢ = Rez, §:= Im z ,
where ¢ measures the distance from the symmetry axis.({‘- axis)e.
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where ‘ |

A= A = @102 @+ 1272, @)

transforms the original potential @ into a function ¢! of
z,Z and K . (A bar denotes complex conjugation). Obviously,
the operation Ii consists of a path-independent integral trans-
formation and a coordinate transformation. Replacing the arguments
(z,2) of ¢ﬂ'by-the new coordinates (z',z') and réihterpreting
Réz' and Imz' as cylindrical coordinates, we obtain a new

axisymmetric solution ¢' of the potential equation (2)e

A second symmetry operation S ,
S ¢' = - @ + %, 1n(Rez), : (5)

changes the sign of the original mass density (first term) and
superpones an infinite rod which covers the symmetry axis with
the line density y.— V2 (second term). |
The composed operation BK = SI' is usually called a Bdacklund
transformation (BT) with the parameter K . Let us discuss the
effect of successive BT's . The particular double Bicklund
transformation Bﬁ; Bf; invertes the sign of the original péﬁem?
tial ¢> and superpones the potential of a rod covering the infi-
nite interval ( S = Kg » K=+00) on the syﬁmetry axis. Using
the terminology of the BT method we denote the gravitational
field of the rod as a soliton.
The further double Bicklund transformation Bgz BK'; , with
K, L L
(1) restores the sign of the original potential and changes

the sign of the rod mass density (p = Y2 —» p==-"2) and

(ii) superpones a second rod which covers the interval (K2, +00 )

with a positive mass density p o= 2 .
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' In the common region of the rods, the positive and negative
' masses compensate, and we have a finite rod with the length

(K,I - ng, the mass density' p o= Y2 , and the mass m = (Kq-Kz)/Z.
| Bachlund transformation 3/;5/\; &, Br. Y

A successive application of the four-foldV MR generates the

superposition of the original solution and an arbitrary number

of rod potentials;

3. Solitons in Einstein's theory

This result may be translated into Einstein's theory, in which

the static axisymmetric solutions are also described by the

Laplace equation (2). In Weyl's cylindrical coordinates, tﬁe

mass rod potential represents the famous Schwarzschild solution,

which now turns out to be a double soliton. Therefore, EE%BE&B§1BE1
o is a creation operator for Schwarzschild particles

(black holes). Invblving limiting procedures one can construct

any axisymmetric static asymptotically flat Einstein field by a

‘superposition of Schwarzschild masses distributed along the

symmetry axise The point made here is that the symmetry operations

Ié and S are sufficient to generate the exterior field of any

isolated source which has the said symmetries;

Now let us return to the axisymmetric stationary fields and try

to find a generalization of Iﬁ and S « Indeed, such a generali-
zation does exist /1/. Following Refs. /1-2/ we could repeat the
procedure outlined for Newtonian fields step by step. Here we

shall be cancerned solely with a discussion of the result. After

N fdb-fold BI's one obtains from a given Ernst potential f

the following new Ernst potential £' /3/:
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f! = £ ’ (6)
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where

D <X‘ Qoo Xw ) = det {exp[ (3#)—'.) lnxsf-(r'-1)1nys]} (7
. Ma Myt Ym

(ys=1 ese m)

is a Vandermonde-like (m x m) determinant. The symbol A = A(Ky)
wés already explained in eq. (4). We have to choose ®, = - £/E
he quantity o (s = 1,2 «s. 2N) is a functional of the original
solution  f and can be calculated from £ via an ordinary Riccati
differential equation /1,3/. & _ depends on the coordinates
(z,2)y the constant K, entering A g, and an additional inte-
gration constant ILg: Ky = X(z,2} KS,LS) . For ingtance, if
the original solution is static (f = 629 = £), the functional

(18 ig given by

s
LS + 1 e2 4’5' '. ' (8)
O( = ' ‘ 8
s L 2 ‘
- i s
s
with ‘P's = <P'(Z,E;KS) as in eqo £3)o If £ corresponds to

an asymptotically flat space-time, the constants L, , K, can
be chosen in such a way that the space-time connected with £ is
also asymptotically flate. In the sense of the preéeding congidera-
tions the potential f' describes a non-linear superposition of
the original'potential f and N "spinning rod" potentials which
turn out to be Kerr-NUT solutionse. It should be noted.that.an
angular momentum monopole (an NUT singularity) can be removed by
means of an Ehlers trandbrmatioh. The pure 2N-gsoliton solution
which is a non-linear superposition of N Kerr solutions origi-
nates from the Minkowski vacuum (4>= 0). Using eqs.(3) and (8)

it can readily be verified that, for ¢ = 0 , the functions o -



iargz constantse There are two different cases to be distinguished.
' The constants KS in As must be either purely real or arise
as complék conjugated pairs -f(-i = Kj (i £ j)e The first case is
well known from Newton's theory, cfe. eqe (4), and implies

—

' Xy = ozs"'] ’ -).S = ks-’l o The other one leads to the hyper-—
 extreme Kerf solutions which have no Newbonian or static connter-
par't; In order to get the superposition of N Kerr black holes

(real Ks) we set

X,=~1, o= (—4)5*1343 [i(—DS (ps] , c(’zs_= Pos-1 | (s=1,..,N), (9)

The real constants’ (??_s are the rotation parameters for the
individual Kerr particles. The masses of these particles are
given by

=1 - \ _
me= Koy = Kog g )OS g (10)

It is an exciting task to find out whether the gravitational
attraction of the Kerr black holes can be balanced by a rotational
repulsion effect, cfe /4/. In order %o thain the superposition
of N Schwarzschild particles we put ¢g =0 « In this case,
numerator and denominator on the right-hand side of eqe (6) become
Vandermonde determinants and can therefore be falctorized; This
solution exactly agrees with the result of N fourfold Newtonian
BT's applied to d) =0 o If the original solution £ belongs to
the static Weyl class, eqe. (8) appliese. This solution corresponds
to an asymptotically flat space-time involving the harmonic func~
tion Cb, and N mass and angular momentum parameters; In the
limit N->o0  this solution might be a suiteble starting point
for solving any“ boundary condition probl'em for isolated sources.

For increasing, but finite N it approximates the solution of
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such a problem by a set of exact axisymmetric solutions.

At preéent the 2N-soliton transformation (6) provides us with

the most“éomprehensive explicitly given Erngt potential £ .

Tiet us consider some of its special cases:

(1) The Tomimatsu-Sato &6 = N solution is the superposition

(ii)

of N identical Kerr solutions with coinciding sources,

K,l = K3= K5 = 000=K2N_1; (F/I = (FB = ..‘.::YEN"".] ;

K, =K, =K

2 4 (fq- = ..Q=CF2N L}

ooa=K2N H (f’g

I

6

In this case, N pairs of columns of the detérminants in
eqe (6) coincide so that the numerator and the denominator
of the fraction become zero. So the Bernoulli-1'Hospital
rule applies (N-1) times, cfe /4/. No wonder that the expli-

citly written result is rather complicated.

The functional transformations (6), including their limits

N> o0, form an infinite-parameter group F , whicii contains
the Kinnersley-Geroch group K as a subgroup. To obtain
representations of this subgroup, again we have to deal with
coincidences of determinant columns. For instance, we may gene-
rate the 'exponentiated! Hoenselaers-Kinnersley-Xanthopoulos
(HKX-)transformation /5/ by setting K1 = Ké = eea=Kon L1=125'
wes = L2N , and applying the Bernoulli-l'Hospital rule N
timese. In the lowest order (N = 1, HKX rank zero), the

HKX transformation generates, from the vacuum (f = 1) ,

the extreme Kerr solution, whereas our group operation leads

to the general Kerr metrice

As it was shown by Cosgrdve /6/;‘our present method is equivalent

to the inverse scattering approach of Belinsky and Zakharov /7/.



' These authors already calculated the Kerr solution from flat
"ébace—time; Their formalism implicitly contains the 2N-soliton
solution; but they did not carry the analysis far enough to

reach an explicit expfession like eqe (6).

Finally, we mentign that not only the Ernst potential (6) but
also the full metric can be given explicitly in terms of the
original metric and quantities associated with it. The derivation
of the corresponding formulae, which mainly consist of determi-
nants (7), requires only algebraic operations. The details will

be published elsewheree.
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