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Summary

Recent investigations of the initial-value problem of general relativity
have shown that the initial-value constraints can be formulated in all cases
as a system of elliptic equations with well defined physical and mathematical
properties. The solutions of these equations can be regarded as generalized
gravitational potentials. These potentials are interrelated and depend on
their sources quasi-linearly. They are particularly useful in analyzing
asymptotically flat solutions of Einstein's equations. We have_found from
these results (1) a technique for constructing physically meaningful initial‘
data in the integration of Einstein's equations, and (2) a method for char-
acterization and analysis of the spacelike mass, momentum, angular momemtum,

and multipole moments of gravitational fields.



If one wishes to analyze Einstein's equations as a dynamical system, one

' This is achieved, without the introduction

must introduce a notion of 'time.'
of special coordinate systems, by foliating the spacetime manifold with a
family of spacelike hypersurfaces.1 The foliation may be arbitrary, except

for its spacelike character. The importance of these slices rests on the

fact that complete Cauchy data for the gravitatiomal field can be defined on
any one slice. Given, in any coordinate system, the intrinsic geometry of the
slice in terms of a metric %1é,.and its extrinsic geometry in terms of the
second fundamental tensor \<lﬁ , one has necessary and sufficient information
to construct a unique solution of Einstein's equations. Of course, one must
complement these data with initial data characterizing matter or field sources,
in order to generate non-vacuum spacetimes.

The difficulty, and the interest, in the gravitational initial-value pro-
blem arises from the fact that the initial data cannot be given arbitrarily,
but must be chosen to satisfy four constraints. Our recent studies2 of the
problem have shown that the constraints can be reduced to a system of four
quasi-linear elliptic equations when one makes a suitable choice of the in-
dependent and dependent parts of the initial data. The ellipticity of the
equations is important on two counts. Firstly, it means that the equations
have strong existence and uniqueness properties3 because many of the well-
developed techniques and theorems concerning elliptic systems can be applied.
For a ge;éf;l'ch6icé 6f4independent data the equations can be soived‘to find
the dependent parts and hence a complete compatible set of Cauchy data. It
is of particular interest that the equations are in a form that can be readily
adapted to numerical solution on a computer.a This is, of course, of great
importance owing to the analytical intractibility of Einstein's equations in

the great majority of cases. Thus, one can use this program of solving four



of the ten Einstein equations constructively to begin to "build" a spacetime
with well-defined physical properties, rather than just to analyze a pre-
existing complete spacetime solution. Such complete spacetimes are simply
‘not available in general. Moreover, one is not limited with this method to
perturbations around known solutions.

The mathematical properties of the initial value problem help one to
characterize the physical structure of the gravitational field also.5 This
is the second aspect of the importance of the ellipticity of the equations
that we wish to discuss in this essay. Since the equations are elliptic, the
dependent data can be regarded as gravitational potentials. These potentials
are generalizations of the standard potential functions that arise in Newtonian
theory. The concept of generalized potentials is particularly fruitful when
the spacetime is asymptotically flat, and we will limit our remarks to this
case for the remainder of this essay.

Since quantities such as energy, momentum and angular momentum are con-
stants of the motion, one expects that they can be expressed naturally in
terms of the initial data. Expressions for these quantities were found by
Arnowitt, Deser and Misner6 and by Brill.7 They showed that each of these ob-
jects can be expressed by surface integrals of part of the initial data at
spatiai infinity. This alone is reason to expect the existence of suitable
potentials becgqse we know that the total energy, momentum, and angular momentum
shouid.&é;énd‘diféc;i§ on the interior distribution of all the initial data
for the gravitational field and its sources.

Well-chosen independent data can be assumed in many cases to fall off
sufficiently rapidly that the asymptotic behavior of the field can be expressed

solely in terms of the potentials. Our closed-form elliptic equations, together



with a new and well-defined specification of "almost symmetry vectors'" in the
space-like slice, now supply a rigorous connecting link between the interior
and asymptotic data by means of exact, three-dimensionally coordinate-free
"Gaussian" theorems.2 There is no need to rely on exact isometries of the
space-like slice, nor to postulate timelike symmetry vectors throughout the
spacetime. Indeed, the latter cannot be known a priori in the constructive
approach. In particular, what we are doing is making an expansion of the
generalized potentials in terms of the multipoles of the elliptic operators.
The energy, momentum and angular momentum discussed above are particular
tefms in the multipole expansion, and can be analyzed in detail without
depending on exact isometries of spacetimes, which would limit one to static
and stationary spacetimes, and their perturbations.

This entire analysis is based on choosing the generalized potentials as
a scalar ¢), which scales the three-metric, and a vector \JL, which generates
the longitudinal part of the extrinsic curvature KXA through the conformal
Killing forn (L. W) RIS [RNE S -2 RN 3"‘; Ve N% . The indepen—
dent data now is the conformal three-geometry, the transverse—tracefree part

of }<§& and the trace of }<gé . The initial value constraints take the form
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Here,}x is the source energy density and V" is its current density. V. L
is a covariant vector Laplacian that is both strongly elliptic and self—adjoint.9
3 . ) ! .L
Hence (¢ is a mass potential and W is a current potential.
Multipole moments are well-defined to the extent the right-hand sides of

the above equations vanish quickly enough as ‘UL » .10» This places



restrictions both on the ordinary sources and on the gravitational waves

("getting beyond the wavefront"). Let us assume that the independent data

has compact support. Hence, in the far—-field the right-hand sides vanish.

The resulting equations are still both non-linear and coupled. However, if

. | .
¢> and W © are expanded in two series in powers of (AL) and we write out
the equations term-by-term, equating powers of (1/r), the result is a series

of equations, each of which is linear and appropriately decoupled from the

, L ' th
others. For example, the nth order term in W consists of a sum of the n

order harmonic functions of V,LLW = O plus extra terms uniquely defined by
lower order multipoles of Cb and VJL . Hence, the far field is completely
and uniquely defined by the harmonic functions of ‘]1.and Vv.L .

Each multipole is physically identifiable. For example, the monopole

term of ﬁ) is the mass. Also, the surface integral form of the momentum
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where '§1 is a translation or rotation vector at infinity, for momentum and
angular momentum, respectively. One can show that the coefficients of the
three first-order harmonic functions of W't define the linear momentum and that
the coefficients of three of the nine second-order harmonic functions define
the pptal angular momentum.11 The other multipoles can be understood by
appealing to the Newtonian.analogs of our equations. Many of their properties
are analogous to those of their Newtonian counterparts, appropriately corrected
for ﬁon~1inearities. Most multipoles will not becounstants of the motion. For
instance, in our approach, with a reasonable deﬁinition of time,12 one finds
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just as expected.



As we mentioned earlier, this generalized potential technique not only
helps us analyze gravitational fields but also permits us to construct them.
A constructive approach to Einstein's equations can proceed as follows. An
initial metric is chosen and the related transverse -~ tracefree part of the
extrinsic curvature isconstructed;9 these objects characterize the gravitation-
al degrees of freedom.13 The trace of the extrinsic curvature I<CX) is
specified. This is an essentially kinematical datum that describes the initial
slice.13 The initial configuration of matter or fields, if any, is specified.z’3
Then the elliptic equations are solved for(ﬁ and VJL , with the boundary con-
ditions ¢ = 1 )\/l'é O at spatial infinity. Having solved for ¢> and \Vi'
one then has a complete and physically interpretable set of Cauchy data. The
remaining Einstein equations give the time evolution of the initial state.
The integration of these equations can also proceed via a numerical computer
solution.4 The only other steps necessary to carry this procedure through
involves the specification of a spacetime coordinate system.14 While the space-—
time does not depend upon the choice of coordinates, it is natural to choose
them so that the independent data has compact support on each hypersurféce. An

@

effective method for constructing such coordinates is to specify *<(§L:t) =

and to require that12
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The fifét;tbhditiohhleéds-to a linear elliptic equation for the lapse function
N, the orthogonal proper time between two siices of the foliation; the second
condition leads to a linear elliptic equation (in terms of {:L.) for the vector
field Ni describing the shift of the three-dimensional coordinates from sur-

face to surface. This choice of shift can be shown from a simple variational

... 15 s . . .
principle to minimize the shear of the gravitational field when computed



along the four-vector b/zyt. This choice minimizes coordinate effects in
the evolution of %Lgand \(;é as much as possible.

Therefore, the resolution of the initial value problem by means of the
potentials 4) and W : has opened up two new ways of increasing our under-
standing of the gravitational field. Firstly, it presents us with workable
equations to construct,numerically or by other approximation methods, inter-
esting solutions which cannot be studied using analytic techniques. Second-
ly, it permits us to characterize and analyze the asymptotic spacelike structure
of gravitational fields, in terms of energy, linear and angular momentum, and

multipole moments.
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