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Summary

Up until the present time it has not been possible to establish
a relationship between the macroscopic gravitational theory and
the properties of fundamental particles. Ultimately, however, if
one is to attain a thorough understanding of gravitation it must be
through a correct theory of the structures of the fundamental par-
ticles. For that reason the present essay is devoted toan analysis
of this point.

Since the macroscopic gravitational theory is based upon non-
Euclidean geometries, one may hope to acquire an understanding
of fundamental particles by a similar approach. In this essay the
Weyl theory of gauge invariance is applied to obtaining a geo-
metrical theory of electrons and protons, and itis shown that their
structure can be understood in terms of localized non-Euclidean
geometries.

Introduction

The purpose of this essay is to present a new theory of funda-
mental particles which is a natural extension of the Einstein
gravitational theory and which at the same time achieves a uni-
fication of electromagnetism and gravitation along the lines first
proposed by Hermann Weyl and later extended by A. S. Eddingtonl.
By making use of the concept of gauge invariance as introduced
by Weyl, we shall see that it is possible to picture fundamental
particles suchas electrons and protons in terms of localized non-
Euclidean manifolds in which the radius of curvature is of the or-
der of the Compton wave-length for the particular particle under
consideration.

The great developments such as the special and the general
theories of relativity that have occurred in twentieth century
physics have been the result of the extension of the concept of
invariance toinclude manifolds beyondthose covered by the trans-
formations in classical physics. Thus the Einstein-Lorentz trans-
formations extended the notion of the invariance of Galilean sys-




tems to four-dimensional manifolds in which time as a fourth di-
mension was introduced on an equal footing with the three dimen-
sions of space. The general theory went still further by postulating
the invariance of the space-time line element to the most general
type of transformation of coordinates and not just to the Lorentz
group, thus achieving a synthesis of non-Euclidean geometry and
gravitation in the large.

Considering the successes of these principles of invariance,
one would be naturally inclined to obtain a still greater unification
of the laws of nature by extending the concept of invariance still
further, and this is what Weyl attempted to do by introducing the
principle of gauge invariance. He hoped by doing this to obtain a
unified field theory in which the electromagnetic field would be
generated by the imposition of gauge invariance justas the gravi-
tational field is generated by the condition of coordinate invari-
ance. Although Weyl succeeded in relating his principle of gauge
invariance toa second order anti-symmetric tensor which he iden-
tified with the electromagnetic field, there were some serious ob-
jections to his theory which made it unacceptable. In this essay
we shall show that the principal objection to the Weyl theory can
be removed if one imposes a uniqueness condition on the gauge
which leads to the Bohr-Sommerfeld quantum conditions. An addi-
tional constraint which we shall impose on the integrability of the
length of an interval will lead to the Lorentz pondermotive force.

We shall show first that we can derive the Lorentz expression
for the pondermotive force on a charge in an electromagnetic field
if we impose upon the Weyl theory the condition that the charge
must move in such a way that the change in its dimensions along
a given path (resulting from the change of gauge along this path)
must be a minimum,. Secondly, we shall show that the Bohr-Som-
merfeld quantum integral follows directly if we impose the con-
dition that the dimensions of a charged particle, except for a pos-
sible change of phase, must return to-their initial values when
the particle moves around a closed orbit. We shall see that this
condition will eliminate one of the most serious objections to the
Weyl theory arising from the non-integrability of length that is a
consequence of this theory. Finally, we shall demonstrate that the
generalized Lagrangian density obtained from (1) leads directly to
the second order Dirac equation for an electron in an electromag-
netic field provided that we assume that the Gaussian curvature
in the neighborhood of a particle is given by the reciprocal of its
Compton wave-length.

The Lorentz Pondermotive Force

The Weyl theory of gauge invariance arose out of the concept
that lengths at different places cannot be compared because of the
change of gauge that takes place asone moves from point to point
in a space-time continuum. Since the gauge was assumed to be
determined by a vector field x,, comparison of lengths at different
places would be ambiguous because the result of the comparison
would depend on the path taken in going from one point to the
other. Although this theory introduced a four-vector k, (to be iden-
tified with the electromagnetic vector potential) into a descrip-
tion of the world quite naturally, the non-integrability of length
which it brought with it led to apparently insurmountable difficul-
ties concerning the structure of atoms.

Thus the objection was raised that according to the Weyl theory
the natural frequency of an atom at a point in space-time should
depend on the path the atom took to reach that point. This objec-
tion was met by introducing the assumption that although lengths
and frequencies depend on the path taken, the effect is much too
small to be measurable in actual physical phenomina. This, how-
ever, is not a satisfactory way out of the difficulty since the am-
biguity is still present in the theory. It is possible to eliminate
this ambiguity without destroying the content of the Weyl theory
byimposing the condition that the measurable physical dimensions
of a particle shall be integrable along the path of its motion, We
must note thatthis is not the same thing as imposing the condition
that the gauge be integrable along a path. This latter condition is
much too restrictive and would result in the vanishing of the curl
of the four-vector x, and hence to the vanishing of the electro-
magnetic field so that our theory would be empty.

The possibility of imposing integrability onthe physically mean-
ingful dimensions and yet not on the gauge arises from the fact
that the dimensions must be treated as complex quantities so that
they have arbitrary phase factors associated with them. Since
these phases need not be integrable, the gauge will not be in-
tegrable either, with the result that the content of the theory will
remain while the ambiguity is eliminated. We shall come back to
this point in our discussion of the Bohr-Sommerfeld quantum con-
dition, but now we shall consider what constraints maybe imposed
on the motion ofa particle without modifying the non-integrability
of the gauge at all.

To see what we must do we shall start from Weyl's fundamental



assumption that if a length A is displaced from a point r, to a
nearbypoint z, + dr,, thenit suffers a change inlength determined
by the equation

dlog A = xdz, (1)

where «, is a vector-field. Let us suppose now that we have a
particle which moves from some point, P, in our space-time con-
tinuum to some other point, p,, along a physically permissible
path. What constraint can we impose upon this motion that will be
physically significant and yet which will not violate the basic
assumptions of the Weyl theory? It is reasonable to assume that
a particle will tend to retain its dimensions in so far as possible
as it moves along its path. We shall therefore impose the condi-
tion that the particle will move along that particular path con-
necting the end points P, and p, which results in the smallest
change in its dimensions. In other words we shall assume that

Py Py dA Py
dlog A = — = f p, dr, = a minimum. (2)
Py Py A Py

We have, then, as an additional constraint on the motion of the
particle the condition that
Py
) Ky dx, = 0 (3)
Pi
for all variations of the permissible path in which the end points
are kept fixed.

If ds is the element of path length along a geodesic between
two fixed points, it must satisfy the stationary condition obtained
from the general theory of relativity

Py
f 5(ds) = 0 ()
P

However, the variation in the integrand eof (4) may no longer be
taken as arbitrary since only those variations are permissible
which are governed by equation (3). We may treat this situation
in the usual way by varying (3) and incorporating this variation
into (4) by means of Lagrangian multipliers.

The mathematical operations canbe carried out quite easily, and
if we introduce the second order anti-symmetric tensor 8. de-
fined by

0Ky dxw .
Bw = X, T X, (5)
4

and the four-velocity V,, we obtain the equation

*X . - AX, zﬂ!&
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where the [ are the aifine connections of the geometry defined
in the usual manner and L is the Lagrangian multiplier.

Since &, will later be related to the vector potential A, by the
equation «, = (i/fi)(e/c) A, , the Lagrangian multiplier, L, must be
chosen equal to —¢(f/me) in order to make equation (6) dimen-
sionally correct. The letters ¢, #, m and ¢ have their usual mean-
ings, viz: electron charge, Planck constant, electron mass, and
the speed of light, respectively.

Since the left hand side of (5) represents the acceleration of a
particle, the right hand side mustbe the force acting onit and this
is, indeed, the Lorentz force if Lis chosen as above. We see that
this is a natural extension of the equation of a geodesic which
describes the motion of a free particle in a gravitational field.

= L Ve (6)

The Bohr-Sommerfeld Quantum Integral

We have already noted that the non-integrability of length which
follows from the Weyl theory brings certain objectionable features
with it which cast doubt on the entire theory. We must therefore
try, in so far as is possible, to eliminate these features but not at
the expense of the physical content of the theory. We may do this
if we note that the quantity log 4 is, in general, not real so that
we may write A = Ae™, where ¢ is a real number. The arbitrary
phase factor will have no effect on the physically meaningful
lengths in nature since these are to be obtained from the mathe-
matical quantities A by taking absolute values. We now have from
equation (1) the result

dlog U + idp = k. dx
ar (7)
dlog N = k, dep — ide
We shall now impose the condition that log % shall be integrable
along any permissible path ofa particle but that log A need not be.
If we now consider a particle moving in a closed orbit in the field
we see that we must have
FdlogN = Fx, dr, —ifde =0
or (8)
Frode, =i do.



We have complete freedom in terms of our theory as to the
change that ¢ must suffer when our particle moves once around its
orbit, but it is most natural to assume the change will be such as
to have as small an effect as possible on A, and this will obvi-
ously be the case if ¢ changes exactly by an integral multiple of
2r. We therefore have from (8) the additional constraint on the
motion of the particle given by

Fr,dz, = 2win (9)
where n is any integer.

If we now replace . by its definition in terms of the vector
potential 4, as given in the final paragraphs of the previous sec-
tion, we have

(e/c) $A, dz, = nh (10)

and this can be shown to be just the Bohr-Sommerfeld condition
for the motion of a charged particle in an electromagnetic field
defined by the four-vector A4,.

The Structure of Matter

To use the theory of gauge invariance to obtain some insight
into the structure of matter we must construct a Lagrangian that
is relativistically invariant andalso invariant to transformation of
gauge. Since this Lagrangian must contain the properties of the
electromagnetic field as well as of the gravitational field, it must
be constructed of a second order tensor containing an anti-sym-
metrical aswellas a symmetrical part. The general theory of rela-
tivity gives us the Einstein-Ricci symmetrical curvature tensor,
Gy , and from it we can obtain a gauge invariant tensor by impos-
ing the Weyl condition. We are thus led to the tensor

*G#’ = Gi" == (K:: == 2"a’(q)gnr = 2",‘1"5!
== ("p,v e Kv;l) "_23',“ (11)
where the §w are the components of the metric tensor, and
ax“. and §,. is defined by (5).

Kyy =

This tensor, which is the sum of a symmetrical and antisym-
metrical part, was used by the present author? to construct a
generalized Lagrangian from which a set of Maxwell-Lorentz
equations for an electron was derived. To do this it was neces-
sary to linearize the Lagrangian by introducing Dirac matrices so
that the electromagnetic field automatically generated charged
particles with spin.

To obtain a model fora fundamental charged particle such as an
electron itis necessary to start withaninvariant linear Lagrangian
from which the Dirac equation canbe obtained. Todo this we must
multiply (11) by another second order contravariant tensor having
the same symmetry properties as *G’u,, and the simplest such ten-
sor is the sum of the metric and the angular momentum tensors,
that is, the general spin tensor.

MY = 30" + 7'7) + HE@ YY) = ¢ + o) (12)
where thev's are the usual Dirac spin matrices. Since the first

term on the right hand side is symmetric and the second one is
anti-symmetric, we obtain

M* *G,, = 4\ + *'F, (13)
where

A= (DQI[G — 6(kz — “ka)]. (14)

Q is a scale factor and G is the Gaussian curvature at the posi-
tion of the particle.

We shall now take as our Lagrangian density the expression
£ = V(X)HN + Tl ¥(X), (15)
where ¥(X)is the four-component Dirac spinor that has to be

varied and ¥(X)is its adjoint. This leads to the following varia-
tional principle:

5 SU(X)[4N + o™ Fr 1Y (X)dr =0 (16)

On carrying out the variation with respect to the spinors, we ob-
tain the equation

6
" '__Kr:_
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where we have introduced the expression (14) for ).

K'%) W(X) = — g\p(X) (17)

Since we have not limited ourselves to any particular choice of
gauge in (17) we may transform to any gauge we may desire by
applying the combined transformations

a8
R MY
¥ (X) — e S¥(X) (18)

where S is a pure imaginary, dimensionless quantity since the 4-
vector «, is a pure imaginary with the dimensions of a reciprocal
length.

Using some elementary transformation we obtain:
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We now replace the 4-vector «, by the electromagnetic 4-vector
A,. Since these two vectors differ intheir dimensions by a charge,
we shall write & =(ie/fic) A,, so that we get Q=—21e/fic. If we
introduce these expressions into (19) and incorporate the numeri-
cal factor 2/3 into the field strengths B, we obtain the equation

e, 1 9 e 1 d g ; G .
[ﬁc 7B + (z' oX, e ‘4') (z‘ aX, fic 4 )]‘”“” =g G0

We note that the right hand side of (20) is essentially the square
of the curvature of space ata point occupied by a particle, in other
words the reciprocal of the square of some fundamental length as-
sociated with the particle. Since there are only two fundamental
lengths that can be constructed from the constants e, fi, m, and ¢,
and one of them, the classical radius of the electron, is non-
quantum mechanical in nature, we shall identify the right hand
side of (20) with the other one. In other words, we shall assume
that G/6 is equal to (fi/mc)~*. If we introduce this into (20) and
multiply the entire equation by %*, we are led to the equation

efi a e ho9 e )] 5
— ™ = == A, ) | — — - 4") [ ¥(X) = meu(X).
I:z c @B + C&X. c 1)(3 X’ ¢ . (X) = mic¥(X).  (21)

Discussion

In deriving the second order Dirac equation (21) for an electron
in an electromagnetic field we have had to make an important as-
sumption concerning the geometry of space-time in the neighbor-
hood of an electron, viz., that the Gaussian radius of curvature of
space in the neighborhood of a particle is given by the Compton
wave-length,

There appears, however, to be justification for assigning so
important a geometrical role to the Compton wave-length because
of two properties, one relativistic and the other quantum mechani-
cal in nature, associated with it. There is a theorem in special
relativity which states that a system with positive energy and
inner angular momentum 7 and witha given rest mass m must have
a finite extension which cannot be smaller than #/mc.? Inthe
sense that this represents the maximum accuracy with which the
position of an electron can he determined, this theorem appears
to be closely related to a similar result derived from the Compton

-———

effect.

Because the determination of the position of an electron must
be carried out by observing photons after they have been scattered
by the electron, it follows that the Compton effect will introduce
an uncertainty in the position so determined because the wave-
length of the scattered radiation is different from that of the inci-
dent radiation. In fact, even if the incident wave-length is zero,
the wave-length of the scattered photon will be of the order of the
Compton wave-length. Pauli* has shown that the minimum value of
the scattered wave-length will be of the orderof (fi/me)[1 — (v/c)2)2
if v is the speed of the electron. For an electron at rest this is
just the Compton wave-length,

One further point may be mentioned in connection with the as-
sumption we have made concerning the Compton wave-length. Such
an assumption implies that the geometry of space-time in the
neighborhood ofan electron (neglecting electromagnetic effects of
external fields) must be governed by an equation of the form?%

G* = 3(mc/h)g"™ (22)

If we neglect gravitational effects, this law leads toa line element
of the form

ds* = —(1 —ar?)~'dr* — r2d6? — 12 sin? 0de? + (1 — ar?) d2,  (23)

where a is the reciprocal of the square of the Compton wave-
length.

We see from this that the coefficient of dr* vanishes for requal
to the Compton wave-length, suggesting that this radius repre-
sents a kind of impassable barrier. We may also see in this a
possible mechanism for the capture of a photon by an electron if
we note that the path ofthe photon is always given by setting (23)
equal to zero. However, at a distance from the electron equal to
the Compton wave-length ds becomes infinitely large unless dr=0,
In other words, a photon can move in the neighborhood of an elec-
tron only ifit has no radial component inits motion. Such photons,
having no radial velocity relative to the electron, must circulate
around the electron, and may therefore be considered as being
captured.



-——

Re FE rences

(1) A. S. Eddington, The Mathematical Theory of Relativity, page
204. Cambridge University Press, Cambridge 1923

(2) L. Motz, Physical Review, 89:60, 1953

(3) C. Moller, Relativity, page 177, Oxford Press 1952

(4) W. Pauli, Wellenmechanik, page 91. J. W. Edwards 1946

(5) A. S. Eddington, op. cit., page 100

10



	1.PDF
	2.PDF
	4.PDF
	6.PDF
	8.PDF
	10.PDF

