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Atbstract

We discuss quantizing the perfurbations of a symmetrical
background spacetime and are lad to study the quantum analogue
of linearization instabilities. We outline the derivation of
the second order gquantum constraints which arise whenever
perturbations of symmetric spacetimes with compact Cauchy
surfaces are quantized. These second order constraints require
invariance of all the allowed quantum states (not just the "vacuum"
state) under the symmetry group of the background spacetime.
This result is discussed in 1iight of the conclusion by Gibbons and
Hawking that the thermal radiation produced by event horizons in
de Sitter space is invariant under the de Sitter group and thus

does not admit a semiclassilcal Interpretation.
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Abstract

We discuss quantizing the perturbations of a symmetrical
background spacetime and are led te study the gquantum analogue
of linearization instabilities. We outliine the derivation of
the second order quantum constraints which arise whenever
perturbations of symmetric spacetimes with compact Cauchy
surfaces are quantized. Thege second order constraints reguire
invariance of all the allowed quantum states (not just the "vacuum"
state) under the symmetry group of the background spacetime.
This result is discussed in light of the conclusion by Gibbons and
Hawking that the thermal radiation produced by event horizons in
de Sitter space 1s invariant under the de Sitter grcup and thus

does not admit a semiclassical interpretation.



I. Introduction

Hawking's 1 recent discovery of particle production by black
holes has stimulated nuch interest in the reaction effects of the
created particles upon the geometry that produces them. The stan-
dard approach to studying such reaction effects is a semiclassical
one wherein the expectation value of a (suitably renormalized)
stress tensor operator provides the source term in Einstein's
equations for the classical gravitaticnal field. In this essay
we shall first recall some of the linitations of the semiclassical
approach and then discuss an alternatvive in which quantized matter
and gravitational perturbatiocris are treated on an equal footing.
This will lead us directly to a consideration of quantum lineasriza-

tion instabilities.

A fundamental limitation to the semiclascical treatment of
guantum reaction effects Is suggested by the recent work of Gibbons
and Hawking 2 on particle production by cosmological event horizons.
They study the Hawking radiation producea by event horizons in de
Sitter space and find that every timelike geodesic "observer" is

immersed in an isotropic bath of thermal radiation with temperature
-

7= e 8
where /qﬂlc the coomoloclcal-:;gafantiaSlnce these various "observers"
are all boosted with respect to one another the radiation bath for
one is not simply related to that of another by standard tensor
transformation laws. Consequently the properties of the Hawking
radiation in de Sitter space would seem to preclude a semiclassical
treatment of its reaction effects. Indeed the Hawking radiation
has properties so mysterious in this case that Hawking and Glbbons
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interpretation of gquantum mechanics may be needed to understand it.

were led to suggest that somethlng like the Everett-Wheeler

A tractable and fully symmetrical approach to studying the
reaction effects of the Hawking process is to quantize both the
matter and the gravitational perturbations about a given classical

background spacetime (say empty de Sitter space). By treating the



metier and the gravitationsl fields even handedly (though only
perturbatively) one can hope to shed some light on the questions
raised by Gibbons and Hawking. Though the quantization of such
(first order) perturbations Ls superficially a straightforward
matter we shall show that the occurence of guantum linearization
instabilities can greatly affect the range of allowed physical
states. , In particular for de Sitter space we shall find that all
the allowed quantumn states (and not Jjust the "vacuum" state) must
be invariant under the full de Sitter symmetry group. We shall
outline a derivation of this result (presented in more detail in

Ref. 4) and discuss its implications.

II. Quantum Linearization Instabilities

Whenever one perturbs a solution of the Einstein equations
he should be wary of the problem of linearization instabilities.
This is the occurence of solutions to the linearized equations
which do not extend to curves of solutions of the exact equations.
Such non-integrable perturbaticns can always be egc%uged by imposing
5’ b 3

a set explicitly known second order conditions Linearization
instabilities occur (for vacuum spacetimes with or without a cosmo-
logical constant) whenever the background spacetime admits a global
Killing vector field and has a compact Cauchy surface. If sources

arec allowed the situation is more complicated (e.g., perfect flulds

are exceptional) but for typical matter fields (e.g., electromagnetic,
Yang-Mills 9) a linearization instability arises whenever the background

matter and gravitational fields admit & simultaneous symmetry.

To extend the idea of linearization instability to quantum theory
requires a different viewpoint from that normally taken in the classical
theory. The notion of curves of solutions of the exact equations
seems to have no natural guantum analogue. A related i1dea which does
extend to guantum theory is the approximation of a function on
phase space (rather than a curve in phace space) by its Taylor
series expansion. The key to reformulating linearization instability
ideas for gquantum theory 1is the recognition that certain projections

of the exact constraint equations can have a Taylor series expansion



which begins at cgecond ordei. The anticipated first order term
vanishes identically. To then avoid an undue truncation of the

full set of constrainis one must supplement the usual linearized
constraints (the projections with non-trivial first order terms)

by a set of non-linear constraints., There 1s one such second order
constraint for each Killing field of the background solution about
which the Taylor expansion 1z made. Applied classically this argument
precisely reproduces the second order conditions previously obtained.
Applied quantum mechanically 1t leads to new restrictions upon the
physical states (additional to gauge invariance) which imply the
invariance of all allowed states under the symmetry group of the
background spacetime. We shall briefly sketch the argument in more
detail. -

An element in the function space of initial data is a pair
(b s ) where‘éz is a Riemannian metric and 77 is a symmetric tensor
density (the gravitational momentumn) defined over csome compact three-
manifold'272 . The constraint map is

j(g,ﬁ = \72/< ,77) —2:?77) (2)
74

where _ 4
/2/ ) = (det g)77 (7-7/' - £ (tr7)?)
j 15 ) = (4)
- (det )7 (e)
and
S = | (5)

é/
are the Hamiltonian and momentumn constrazints respectively.
Let ( G,s 7o ) be a particular solution of the constraints. This
will bb initial d"*a for the background spacetime, The Taylor

expansion of SQ about éj/o,-7r\ is

,{/&ﬁ" ) /EaA > Df/ 7) (Au))'f— ! é- /7 /1 cJ/ /1 LJ)) (6)

"<c

nT
wvhere ji) bﬂ,//) is the n-th dglivafive of &'. The orOJection

g /
§D onto any pair ((,Y") where (’is a function and Y a vector

~
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fileld onj77?is defined by

. et Yy .
N Q% = // 5 S //’, ) 4
Z?C?W.,2(6/'7) \// Z( 27(‘/9-‘,77)‘/“ >/‘~"02§/7\/ ) (7)
777
This projection has a trivial (i.e., identically vanishing) first
order term in lts Taylor series expansion about (g, , 77 ) if and
only if (C?,>/3 are the normal and tangential projections (on the
initial surface) of a Killing vector field for the Einstein space-
time determined by the data §f> ,ZC’)7’8 . Therefore the projec-
tionis of the constraints onto the Kiliing fields of the background
always begin at second order (where in fact they are known to be
non—trivial6’8) rather than at first corder as one might nave

expected. g

The usual linearized constraints are

2i>§523;,ﬁi>‘(<zgaj> = O . (8)

Ry the foregoing argument these should be supplemented by the

second order const;aints )
( < YO, /,’\/ /0‘) ) = O
Z?aﬂ\@ Q‘Z‘U@m) //,w),./, (9)

where ( C?,>/) are the projections of a Killing field of the

background. To guantize this system we can employ Dirac's method
of imposing the constraints as restrictions upon the allowed . A
physical states. Thus with a suitable choice of operators (lQ,CJ)

for the quantized perturbations one imposes

DEG,m)-(hs) |4y =o (10)
[ 2T A A .
0 DBy @ b)) )1 =0 .y

Equations (10) require gauge Iinvariance of the allowed states
and are the expected censtraints of lowest order perturbation
theory. Equations (11} however are new. They require invariance
of the physical states under the symmetry group of the background

spacetime. This conclusion follows from the observationr’ that



the guantity

| Z“;é )/\}\DQQ@7 ,.«><'/~/7‘7: - ) (4 es) > > (12)

is precisely the constant of the moticn of linearized theory
associated with the Killing field (C?,>/5 of the background.

As such it is the Hamiltonian generator of the corresponding symmetry
transformation of {the canonical perturbation variables (/é,coﬁ.

In de Sitter space for example one has ten constraints of the type

in Eq.(11l). Their commutator algebra is isomorphic to the Lie

algebra of the de Sitter group.
IIT. Discussion

How can one make sense cf a quantum theory based exclusively
on invariant states? Such states do not seem to allow the descrip-
tion of phenomena which are localized in a spacelike symmetry
direction or which evolve in a timelike symmetry direction. But
this rigidity of the physical states is only apparent. Spatial
localizaticn and temporal evolution must be interpreted intrin-
sically rather than with reference to the symmetric background
spacetime. One part of the quantized system 1s localized or
evolves only relative to another part. I timelike symmetries
occur some part of the guantized systém of matter and gravitational
field must be used as an intrinsic clock. If spacelike symmetries
occur some component of the system must be used as a benchmark for
spatial localization.

This idea that temporal evolution or spatial localization
must be described intrinsically is not at all new. It arises
rather naturally in Wheeler's 10 geometrodynamical approach to
guantization, What is new is the appearance of this viewpoint in
the more conventional approach to quantization based on perturba-
tions of a classical background.

A quantum theory based on invariant states requires for
consistency that mcasurements bc described intrinsically. The
measuring apparatus must be treated as a component of the quantized
system itself and not as a detached entity localized in the



background spacetime. This conclusion recalls the view of Gibbons

and Hawxing mentioned above. They found that the "vacuum" state

of de Sitter space was a group invarisnt--it exhiblited a thermal
radiation bath of fixed temperature to each of the group equivalent
geodesic "observers" in the de Sitter background. We find by quite
different arguments that all of the guantum states must be group
invariant and suggest, as did Gibbons and Hawking, that the
"observers" must for consistency be included in the description of

the quantum system itself. Only in this way can one make intelligible
a quantum theory whose only observables are group invariants.
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