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Consideration in quantum cosmology is conventionally based on the Wheeler—DeWitt
equation H ¥ = 0 resulting in trivial dependence of the Universe wavefunction on time.
This leads to difficulties in deriving time evolution of the quantum Universe and in
transition from quantum cosmology to classical one. Recently some works appeared
considering self—measurement of the quantum Universe in an explicit way, with the aim to
introduce classical concept of time. The purpose of the present paper is to treat
self—measurement of the quantum Universe in the framework of the path—integral quantum
theory of continuous measurements developed by the author. This allows one to explicitly
introduce geometrically defined time into quantum cosmology. Evolution of the quantum
Universe under continuous measurement of the lapse function and the scale factor, will be

evaluated and analyzed in the framework of a simple minisuperspace model.
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1. Since the work by Hartle and Hawking on the Universe wavefunction [1] great
interest exists to quantum cosmology. Consideration in quantum cosmology is

conventionally based on the Wheeler—DeWitt equation
HY =0 (1)

resulting in trivial dependence of the Universe wavefunction on time. This leads to
difficulties in deriving time evolution of the quantum Universe and in transition from
quantum cosmology to classical one. Usage of the scale factor a as an "intrinsic time" for
the quantum Universe seems not quite satisfactory or insufficient.

Recently some works appeared [2] considering self-measurement of the quantum
Universe in an explicit way, with the aim to introduce classical concept of time. Self-
measurement means , in the present context, measurement of some degrees of freedom with
the help of the other degrees of freedom, considered as a measuring device. The purpose of
the present paper is to treat self—measurement of the quantum Universe in the framework of
the path—integral quantum theory of continuous measurements [3,4]. This allows one not
only to describe, as in [2], "decoherentization" leading to classical character of the "intrinsic
time" a but also to explicitly introduce geometrically defined time into quantum

cosmology. Evolution of the quantum Universe under continuous measurement of the lapse



function and the scale factor, will be evaluated and analyzed in the framework of a simple
minisuperspace model, generalizing the results of Halliwell [5].

2. The probability amplitude for a quantum system to propagate from the point ¢’
to the point ¢’/ during the time interval [¢/,¢//] can be expressed by the path integral

(the units here and below are natural)

Uy ,0) = |did exp{islal} .

Let continuous measurement is carried out during the time interval [¢/,¢’’] giving a result
(reading) which we will denote by « . Then the propagator from ¢’ to ¢’’ can be

expressed [3,4] by the integral of the same type but with an appropriate weight functional:

Upa*07) = [dld w,ld exp{isld} . @)

Here the functional w, expresses information, contained in the measurement result «
about the path, that the system propagates along. This means that wa[q] is small or equal
to zero for those paths [g] that are excluded by the measurement result «, and is equal (or
close) to unity for the paths [¢] compatible with « .

3. For description of measurement in quantum gravity one should use a functional
integral over configurations of the gravitational field [4]. An amplitude describing dynamics

of quantum Universe can be presented by the integral

UCG36") = |Gl exp{(SI*GL)} 3)

over paths [3G] = {3G(7)| /< 7< 7/’} in the space of 3—geometries (in the superspace).
The paths [3G] describe in fact 4—geometries.

The amplitude (3) describes dynamics of the quantum Universe in absence of
measurements and satisfies the Wheeler—DeWitt equation (1). If however continuous

measurement of geometry is carried out during the interval [7,7/’], an amplitude



(propagator) should be modified by introduction a weight functional:
Up g) (G7*6") = [dC] up ) 6] exp (i ST°G) *)

Here [*¢] denotes the 4—geometry describing the result of measurement and w3 f]PG]
expresses the information contained in this result, about actual 4—geometry [3G] .

The idea of the present paper is that the physical time between the instants marked by
the parameters T, 7/ can be evaluated from the geometry [3 f] and thus the amplitude
(4) should depend on this physical time in nontrivial way.

4. Halliwell evaluated in [5] an amplitude (3) for the minisuperspace model resulting

from the metric of the form

ds? = — [N*(1)/q(T )] dv® + ¢(7) dQ;. | (5)
The reparametrization
dr — dr = w(r) dr, N(r)— N(r)=w(r) N(r) (6)

does not really change geometry. The time ¢, invariant under the reparamenrization (6),
(i.e. physically significant) can be defined as dt = N(7)dr .
Deriving the Einstein action from the metric (5) and accepting the gauge condition

dN/dr = 0, Halliwell obtained for the amplitude (3) the following integral:

Ula 00 )= =) [ AN ANl dexi-(/8)| r( /N~4) (7

giving the expression (with the notation 7= (7/'—7’)N)

Ul *,q') = (87i)"/2 [ar T expl=(i/8) (¢ =g )/ T4T1}. 0

This amplitude is a solution to the Wheeler—DeWitt equation (1) taking the form

(1/2)(46°/0q" **— 1) U(q’",q’) =0 (9)



5. Let us now modify the integral (7), taking the self—measurement of the Universe
into account. In the framework of the minisuperspace model the geometry is described by
the functions [g] and [N]. The self-measurement means that some functions [x] , [v] are
found as estimations of the functions [¢] and [N]. This can be expressed by the functionals

" 7."

ugld = exp[-p” JT, dr N(7) (4= )], y,;[N] = expl~o™ JT, dr | N—v|](10)

which are invariant under the reparametrization (6).

With these functionals introduced into (7), the propagator becomes (instead of (8))
U (4707 = (8mi)/ 2 J 4T T2 W(T/p) 8 (1] R i
xexp{—(i/8)[(¢''—q' )*/T — 4T1}. (11)

Here W(z) is a known function,

Y v = exp{—a'2J:’ dr|v(t)=T/(r" "=’ )|},

m
_ _ 2 o 2/ & 2

R{r] = exp{—(T/20%) E (rj=q,1)"/ [1 — 8i(T/mko)"]}

and decomposition in a series of the type
m .

() = kiz)lzksm [krr/ (17" —7")
is introduced for the function x(7) and the classical trajectory

0,(r) = (=1 )(q = )| (1" =1") + 7"

6. The functional ¥, describes distribution of different results [1] of the
measurement of the lapse function [N] . It can be easily seen that ¥.{v] can be close to

unity for some value of 7 only if the function [v] is almost constant. If v = const, then



340 = 3(Tt)= exp{-07| T1]},

where the notation ¢ = (7/’/—7’)v is introduced. The value v being an estimation of the
lapse function, ¢ is evidently an estimation of the gauge—invariant duration of the interval
[77,777] . Thus physically significant time emerges in our analysis.

The functional R{x] characterizes distribution of different results [x] of the
measurement of the squared scale factor [g] . To obtain general notion about this functional,
let us neglect the imaginary term in the denominator of its exponent describing in fact

quantum effects in measurement of [g] (actually this term is negligible for t <1, 0c?< p):

Ryl = exp[~(T/20%) 3 (y=0,)") = expl~(T/p})(r" ) drtig)
This means that the result of measurement [«] is close to the classical trajectory qo( T).
Considering RT[n] for a fixed function [x] but different ¢’, ¢’ we see that these points
are localized about the end points of [k] . The quantum effects make the picture more
complicated but do not violate this localization.

Let now suppose that ¢’,¢’’ are close to the end points of [k] so that RT[K,] is
equal to unity, and investigate dependence of the propagator on ¢’,¢’ and on ¢ due to

the other factors. For small ¢, one has ¥(T-t)~ 20% §(T—t) . Then the propagator is
Uy ,00) = 20°(87i) M 2 Pexp{—(i/8)] (4 —q ) /144} | (12)
and satisfies the Schrodinger equation (instead of the Wheeler—DeWitt equation)

18/0t Uy(q*,q') = HU(q"",q"). (13)

In the opposite limit of large o and small ¢,
o>>1, a*>>p, t<p, p>>1,
the functions ¥ and W are equal to unity for all values of 7 which are essential for

integration so that the propagator becomes equal to the Halliwell’s amplitude (8).
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