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Summary

It is suggested that, in a quantum theory which takes gravity into account,
isolated quantum mechanical systems should be described by unitary representa-
tions of the asymptotic symmetry group of general relativity. In particular,
elementary particles should be described by irreducible representations. It
is pointed out that, in contrast to the conventional non-gravitational scheme,
the particles all necessarily have discrete spins and a finite number of polar-
isation states. This agrees with observation. A physical picture of the
resulting particles is given. The possibility of using the scheme to account -

for internal symmetries is discussed.

In specially relativistic quantum theory, the identity component of the
isometry group of flat space-time, the Poincaré group, plays a fundamental réle,.
The reason for this is as follows. According to quantum mechanics, each isolated
quantum mechanical system is‘described by the projective space of one dimensional
subspaces of a Hilbert space, and the measurements that can be made on the
system, the transition probabilities, are given in terms of the modulus of the
scalar product of vectors in the Hilbert space. The content of the 'principle
of relativity" in such a setting is that the transition probabilities are in-
variant under Poincaré transformations. Using only these veiy general assumptions,

it can be shownl_s that every isolatcd quantum mechanical system must be described



by a unitary representation of the Poincaré group in the Hilbert space associated
with the system. In his classic paper, Wigner1 classified all such representa-
tions, thus obtaining a complete description of all possible such quantum
mechanical systems. The classification corresponds to a classification of all
possible specially relativistic wave equations.l_5 Actually, the representation
description is superior to the wave equation description, since the former yields
directly the entire space of wave functions describing the system, together with
their transformation properties, whereas the latter merely gives a partial
differential equation to be solved for a dense subset of differentiable wave
functions, with no transformation properties. (However it seems that inter-
actions are easier to introduce in the latter approach, but see reference 6

for a group theoretical approach to the interaction problem). Another advantage
of the representation approach is that it provides, perhaps, the clearest
definition of an '"elementary particle'" known. Indeed, if a quantum mechanical
system is such that it has no Poincaré invariant proper subsystems, it surely
represents one's intuitive idea of an elementary particle, so that one makes

the definition: (A) An elementary particle is (a quantum mechanical system

associated with the representation space of) an irreducible representation of

the Poincaré group.z’4

This definition brings out very clearly that the significant space-time

parameters which distinguish elementary particles are the mass squared and the

spin. Setting aside until later the question of "internal" symmetries, one
may justifiably say that Wigner's approach and the developments it gave rise to

provide the most successful description to date, philosophically and practically,



of free relativistic particles. Nevertheless, the approach has several limita-
tions. For example, one can criticize (A) on a point of principle: 1(A) Accord-

ing to general relativity, space-time is not flat, and any reasonably general

space-time has no isometries whatsoever. In particular, the Poincaré group is

not defined. One can also raise the following practical objections: 2(A) The

definition allows the mass squared to take any real value, that is, it allows

a continuous mass spectrum (the observed mass spectrum is discrete), and 3(A) the

definition allows three different types of spin: discrete spins with a finite

number of polarisation states, continuous spins with an infinite number of

polarisation states, and discrete spins with an infinite number of polarisation

states (only the first type is observed).

In this essay, I wish to present arguments in favour of a new scheme which
appears to overcome some of the above objections. Both in quantum theory and in
general relativity, many people have for some time concentrated their efforts
on studying the asymptotic propertiesrof physical systems. For example, the
basis of S-matrix theory is that, since only the asymptotic states in scattering
experiments can in principle be observed, the theory should only be concerned
with asymptotic properties. Again, in general relativity, the study of bounded
sources emitting gravitational radiation is carried out mainly by analysing
the behaviour of the fields asymptotically in light 1like directions. This makes
sense observationally, since the information which an outside observer collects
is precisely of the type that the theory analyses. This work in gravitational
asymptotics began in an important paper by Bondi, Metzner and van der Burg,7
and was generalised by Sachs.8 These authors studied a class of asymptotically

flat space-times representing the gravitational systems referred to above, and



their work has been followed up and generalised by many other people. From the
present point of view, the major result of these authors was as follows: They
found that the group of asymptotic isometries (transformations defined in a
neighbourhood of "infinity," which approach isometric ones sufficiently near
to "infinity") was independent of the details of the system, and that it con-
tained, but was larger than, the Poincaré group. The group, now called the
Bondi-Metzner-Sachs group (BMS group), may be thought of, roughly, as the group
which preserves the asymptotic flatness of asymptoticaily flat space-times.
This BMS group immediately attracted attention as a possible candidate for re-
placing the Poincaré group in a microphysics which included gravity, or as an
important tool in the problem of quantising the gravitational f:'Leld.g_11

Here I would like to be a little more specific. Thought of classically,
an elementary particle in an otherwise flat space-time may be represented, as
far as its gravitational properties are concerned, as an asymptotically flat
space-time. In practice, of course, the ambient space-time is not flat (it has
cosmological curvature or, more provincially, curvature due to the earth's gravi-
tational field). However, the ratio of the space-time curvature due to the
particle at its surface to the space-time curvature due to the earth is of the
order of the ratio of the mass densities of the particle and the earth, so
that it is an excellent approximation to represent the particle as an asymptotically
flgE_space—time.lz Since experimental information about the particle is neces-
sarily asymptotic, it seems eminently reasonable to describe the particle entirely
in terms of asymptotics. But then, though no exact isometry group need be defined,
the asymptotic group is well defined. In view of the remarks in the preceding

paragraph, it seems very plausible that one could achieve a fusion of quantum



theory and general relativity at the purely asymptotic level by making the

following definition: (B) an elementary particle is an irreducible unitary

representation of the Bondi-Metzner-Sachs group. This gives rise to the definite

mathematical problem of finding these representations, which was initiated by
Sachs9 and Cantoni%z’_15 I recently studied this problem systematically by means
of Mackey theory,l6 and found all of the irreducible unitary induced representa-
tions of the group,”’18 and examined, with M. Crampin, their restriction to
the Poincaré subgroup.19 It was shown that these representations all have
"little groups'" which are comEact18 (unlike those of the Poincaré group). This
has the consequence that the BMS group only admits spins of the first type
referred to in'objection 1(A), discrete spins with a finite number of polarisa-
tion states - the observed type. Thus it would appear that definition (B)
answers objections 1(A) and 2(A). However, it certainly does not answer 2(A).
From a study of the representations, one can get some idea of what these
elementary particles look like physically. Classically, imagine the localised
system as surrounded by a large sphere (celestial sphere) on whose surface the
radiation information from the centre registers (in practice, one could think
of the sphere of having a radius of '\:10—1 cm>>10_13 cm ). The generalised
momentum (or ”supermomentum”l7’18) of the system is simply given by some distri-
bution of radiation on the sphere, the "little group' being the symmetry group
- of this distribution. With this picture, one can already understand intuitively
why the little groups of the BMS group all have to be comEact.ZO The §Riﬂ.6f
the system simply corresponds to the rotational symmetries of the radiation

distribution, so that particles with distributions of low (high) symmetry have

simple (complex) types of spin.



As far as '"internal'" symmetries are concerned, there are, in addition to
the little groups corresponding to the directly observed types of Poincaré
spin, several others, and it is possible that some of these may be interpreted

18,19,21 This would be attractive, since

in terms of "internal' symmetries.
the internal symmetries would then have a direct geometrical interpretation.

On the other hand, if it proved to be necessary to combine conventional internal
symmetry groups with the BMS group, then O'Raifeartaigh's proof,22 for the
Poincaré group, of the impossibility of mass splitting, no longer holds”’21
(because the BMS group is infinite dimensional), so this approach holds out
some hope of removing 2(A). Thus definition (B) does seem to hold considerable
promise 1in some respects. However, much remains to be done on the problem -
for example, to obtain wave equations and introduce interactions probably
requires a better understanding of purely asymptotic physics. My latest work‘
on the problem has been on 1lifting of projective representationé to true ones
(c.f. reference 2), a problem I have almost, but not quite solved. I certainly

remain convinced that asymptotic symmetries will continue to play an important

r6le in physics in the future.
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