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Abstract

We point out that the celebrated Hawking effect of quantum instability of
black holes is a purely classical but nonperturbative effect in string theory. Study-
ing quantum dynamics of strings in the gravitational background of black holes
we find classical instability due to emission of massless string excitations. The
topology of a black hole seems to play a fundamental role in developing the string
theory classical instability due to the effect of sigma model instantons. We ar-
gue that string theory allows for a qualitative description of black holes with
very small masses and it predicts topological solitons with quantized spectrum
of masses. These solitons would not decay into string massless excitations but
could be pa,ii‘ created and may annihilate also. Semiclassical mass quantization of
topological solitons in string theory is based on the argument showing existence

of nontrivial zeros of beta function of the renormalization group.
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It is believed that black holes should play a very important role in quantum
gravity. The most remarkable theoretical prediction about black holes, which also
opened the beautiful connection with thermodynamics is the Hawking effect.!+3
Hawking discovered that a black hole will radiate quantum mechanically with a
thermal spectrum having a temperature related to the hole’s mass M, angular

momentum L, and the electric and magnetic charges @ and P.

Classical general relativity and the physically reasonable assumption of non-
negativity of energy imply that the event horizon of a black hole has the topology
of a spere S2. It is plausible to assume that black holes “survive” quantization of
gravity and they should be present also in the future theory of all interactions.
At least it is so in the (super) string theory.* A black hole is the highly nontrivial
and nonperturbative solution of the Einstein equations which is classically stable
and unique.? It is impossible to obtain a black hole solution by summing up a
finite number of terms in the expansion of Einstein’s equations around Minkowski
vacuum, a fact which is beautifully demonstrated by the fact that the topology
of spacetime outside the event horizon, or, what is the same, the topology of the
Euclidean black hole is R x §%. In the following we will define a black hole in
semiclassical or quantum gravity by saying that the second homology group of

its manifold is nontrivial, Hy (M) = Z.

What are the implications of this beautiful mathematical fact in quantum
gravity? It seems that the physical implications of this simple fact are not
quite well understood. The condition of the nontrivial second homology group
Hy(M,p,) for black holes is reminiscent of the nonabelian t’Hooft-Polyakov mag-

netic monopoles which are present if the second homotopy group of a certain



manifold is nontrivial. In particular it seems unclear if there is some relation
between the fundamental quantum mechanical instability of black holes and the
fact that Hy(M,,) = Z. One may ask, is it possible to stabilize a black hole with
respect to the Hawking effect by introducing topological charges which would
bound the energy of a hole from below (the Bogomolny’i bound)? If it were
possible, then there would exist topological black hole solitons. The usual way
to understand the Hawking effect in QFT does not rely on the fact that the
topology of an event horizon is S%. Rather, it is important that there be a hori-
zon and that the Beckenstein-Hawking entropy be Sy, = %, where A is the area
of the event horizon. It seems that this property of black hole physics, which
attributes an intrinsic entropy to a black hole and equals it to a basic geomet-
rical quantity—the area A of the generator of the second homology group of
a black hole manifold—should be derived from fundamental principles of quan-
tum gravity. Accepting the information theory point of view on entropy, advo-
cated particularly by Beckenstein®, we reach the conclusion that the number of

ways a black hole can be “built up” depends on its geometrical properties only:

[ = ¢S = A4,

I think that there should exist the way to understand the relation between the
topological properties of black holes, like Hy(M,,) = Z, their entropy and funda-
mental quantum mechanical instability. The Hawking effect should manifest its

presence in the future unified theory of gravity and all fundamental interactions.

One of the promising candidates for such a theory is theory of strings.* What
is attractive in this theory is the presence of a massless spin-2 particle in its per-

turbative spectrum. The tree level interactions of this “graviton” are effectively



described by the Einstein-Hilbert action. In the classical limit of large occupa-
tion number of gravitons we have a nontrivial macroscopic graviton “condensate”
®,., and we can define the effective metric gy = nuy + Py which is a solution of
the Einstein equations. The conformal invariance implied by the geometrical fact
that the string world-sheet is two-dimensional is highly restrictive in QFT.* In the
low energy limit only the massless string excitations play a role and we can study
the dynamics of the quantum string propagating in the classical background of
the massless field “Bose condensates”. It is definitely interesting to address the
question of how the quantum dynamics of strings is restrictive for black holes.
The closed string contains other massless excitations: a spin-0 dilaton and a spin-
1 abelian two-form B,,, which plays a fundamental role in anomaly cancellations.
One may expect that the Hawking effect will manifest itself in quantum mechan-
ical inconsistency of string propagation in the gravitational field of a black hole.
We would like to demonstrate in this essay how the nontrivial topology of black
holes implies their instability in string theory. The same sort of arggment leads
to the conclusion that there are possible topological black hole solitons stabilized
by the topological “quantum numbers” and they would be solutions of string
equations of motion. They would be created or annihilated in pairs. Also, what
seems to be the fundamentally new aspect of black hole physics brought about
by string theory, the hole’s mass or irreducible mass (-16;)1/2 is quantized. This
sort of behavior of Planck’s mass black holes was postulated several years ago

by Beckenstein.®® The famous Beckenstein-Hawking entropy formula obtains for

such objects with the simplicity of combinatorics.

Let us now go to the details and see how string theory makes use of the



nontrivial black hole topology. The string interaction with background fields is

described by the nonlinear sigma model
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where h,g is the string world sheet metric and (2ra’) "'=M2 is the string tension.
Considering only the gravitational background and demanding that the two-
dimensional nonlinear sigma model (1) be quantum mechanically conformally
invariant leads, in the lowest approximation, to the classical Einstein equations

for the background metric.

Classical string equations of motion are derived from the condition of con-
formal invariance of quantum dynamics of the sigma model—the sigma model
should be Weyl invariant on the quantum level! Black holes are solutions of the
string equations of motion in the perturbative expansion in o'. Is this also true
nonperturbatively? The answer is no, because black holes are unstable due to
the Hawking effect; we conclude that instability of black holes in string theory is
a genuinely nonperturbative effect in a'! Let us see how it occurs. String theory
gives us the unique opportunity of including topological issues of quantum grav-
ity into the game. Breakdown of Weyl invariance or beta function depends only
on the short-distance behavior of the QFT and does not depend on the string
world-sheet topology. The Euclidean path integral Z = [ DXDh exp(—1I) can
be calculated on S%, when the Weyl invariance holds, which corresponds to the
classical approximation to string theory. The condition for a classical solution in

string theory is (V) = 0, where V is the vertex operator of a given physical state.



It means that the vacuum is stable with respect to emission of particles corre-
sponding to V. In order to study stability of a given ground state it is sufficient
to check it at the tree level, which corresponds to the classical approximation of
string theory. The last condition corresponds at the tree level to the world-sheet
conformal invariance. Conformal invariance on S? means, in particular, invari-
ance under the scaling z — Az on the complex plane. A physical closed-string
vertex operator has dimension two and transforms as V — A72V, which implies
(V) = 0. V should be evaluated only at zero momentum, which is on shell only
for massless particles. If (V) = 0 for massless particles, it means that a given
classical ground state is unstable with respect to emission of “soft” particles into
the vacuum. If it happens for black holes it means that the Hawking effect is a
classical phenomenon in string theory.

Consider now a black hole background on which a quantum string propagates

_4_)1/2

i ; A is the area of the event

which has a characteristic length scale R = (
horizon. It is convenient to rescale the sigma model fields X* — RX* introducing
dimensionless fields and the action

1 a 14
I= 20 d*0 3o X" * X" g4y (X), (2)

where ¢g? = ;g; is the dimensionless sigma model coupling constant. The con-

dition for conformal invariance of (2) is the vanishing of the beta function:
B(g?) = —(ﬂ(—%)g“’(u). One may ask if the Schwarzschild black hole is a solution
of the string equations of motion or, equivalently, if it is stable. Of course we as-
sume that the d = 10 dimensional string model is compactified on some compact

manifold K such that its beta function is vanishing, which seems to restrict the



possible compactifications My, x K. The sigma model (2) on a black hole back-
ground has nontrivial instantons due to the fact that Ha(Myp) = mo(Mpp) = Z
is nontrivial and there exist maps X#(o) such that I is finite and bounded from
below. A historic role of instantons is to violate classically valid symmetry or
produce effects which couldn’t be seen at any finite order of perturbative expan-
sion. So one may ask, what is the effect of world sheet instantons on a black hole

background?

The effect we find is destabilization of a black hole. We can evaluate the
partition function for the sigma model on the Schwarzschild black hole back-
ground in the instanton (WKB) approximation. In this approximation we can
also tell what the beta function is. The Euclidean rescaled Schwarzschild metric

in Kruskal coordinates is
ds? = gudX*dX" = fdudi + r*(1 + ww) *dwdw, (3)

w = cot(8/2)e?, u = (r — 1)1/26(’“““)/2, f = %L, and k is the surface gravity
k= 3iz-

Instantons are complex (holomorphic or antiholomorphic) maps from S? to
the u or w-plane. Only u = const instantons contibute to the partition function
Z, because they only have finite action. Small oscillations around the w-sector
C P(1) instantons lead to the classical Coulomb gas partition function, a standard
result of the C P(1) sigma model. Small oscillations around u = const give rise
to a contribution depending on r = const and the integral in the collective
variable r has the effect that only r = 1 contributes significantly to the path

integral (r = 1 is a saddle point!). Basically, we would expect that the main



contribution to the string partition function would come from strings “living”
close to the event horizon. A similar phenomenon was discovered by Thorne and
Zurek in their statistical derivation of Sy, = %. Now we employ the fact that the
dynamics of strings in a black hole background is governed by the C P(1) sigma
model on the event horizon (here is where the topology of a black hole enters)
and observe that it does have a nonvanishing beta function. The C'P(1) sigma
model is asymptotically free, which means that ¢ = 0 is an ultraviolet fixed point
corresponding to R +— oo or My, — oo. It means that only ultraheavy black
holes are stable in classical string theory. For very large black hole masses the
Hawking effect can be neglected or, equivalently, a black hole metric is a solution
of the classical string equations of motion. This dual point of view reflects the
fact that the Hawking effect corresponds in string theory to classical instability

of a black hole due to dilaton emission.

Is it possible to produce an example of vanishing beta function for nonzero
g? In QFT it would correspond to the absence of the Hawking effect. It is
only possible when the Beckenstein-Hawking temperature vanishes. Quantum
mechanically stable black holes do exist and they are the extremal charged
Kerr black holes. For simplicity we consider only the Reissner-Nordstrom case:
My, = Mp)(Q? + P2)1/2_ The physical interpretation of the vanishing temper-
ature is quite simple because we have a state, stabilized by the absolute charge
conservation, behaving like a soliton. However,there is a problem with inter-
preting the quantum mechanically stable black holes as solitons. The mass of a
soliton is semiclassically quantized. We would like to argue that string theory

offers a natural mechanism for semiclassical mass quantization of black holes.



Let me give here first an ad hoc but instructive demonstration of how the
quantization of mass of the extremal Reissner-Nordstrém dyons can occur. As-
sume that the theory has magnetic monopoles, which are in fact dyons (this
happens in string theory due to the topological effects of the B field*) satisfying

the Dirac-like quantization condition: QP = n/c, ¢ an integer.* Then a black

hole mass is: My, = Mp(Q? + Q@zz)l/z. However, the ground state of a soli-
ton should have a minimal energy; minimization of My gives: @ =n/c, @ = P,
M}, = 2M%n/c. We observe that the classical formula for a black hole dyon mass
is duality invariant but quantum effects need not respect this classical symmetry.
The irreducible mass of a semiclassically quantized R-N dyon and its Beckenstein-

Hawking entropy are: M;, = (A/167r)% = Mp, (%)5, Spp, = 2mn/c. The number

2nn

of internal states which give rise to this entropy is:® I' = e = ¢~ . Now we
may ask in how many possible ways we can produce the mass level with the
topological “quantum number” n ? A simple combinatorics gives I' = 2"~!, from
which the information theory entropy is S = InI' = (n — 1)In2. Discarding an
additive constant these two entropies naively agree if 27” =In2,0rc= {% = 9.03.
For this value of ¢ the lowest lying soliton state would have a mass My, = .5Mp;,.
This quite crude argument suggests that there may exist topological black hole
solitons with masses of the order of Mp; which are stable quantum mechanically
with respect to emission of massless particles not carrying the same charges as
solitons. Such topological solitons may be created and annihilated in pairs with
opposite charges, but these processes can be only studied in full quantum gravity.

It is amusing to observe that the Dirac-like quantization condition for fractional

charges arises in string theory where c is simply, as Witten observed, the order of



the fundamental group of K. The topological properties of a compact manifold
K have implications for low energy physics. In particular the Euler characteristic
in some models is related to the number of generations of fundamental fermions.*
The nontrivial first homotopy group of K reduces the Euler characteristic ¢ times,
where ¢ is the rank of 71(K). Is it only a coincidence that the mass spectrum of

black hole solitons is related to the topological properties of a compact manifold

K which occurs in string theory compactifications?

It is important to recognize that string theory offers the possibility of stable
topological black hole solitons, which by definition are objects satisfying string
equations of motion—the sigma model beta function vanishes for these configu-

rations!

How do we get a vanishing beta function in QFT? It is a very rare situa-
tion when the beta function can be calculated exactly and has isolated zeroes.
The topological effects of the B gauge field may lead to an effectively free field
theory in two dimensions. Such an effect is known and a beautiful example was
discovered by Witten®—the nonlinear sigma model on a group manifold with
the Wess-Zumino term. For certain values of the coupling constant g% = 4—,;5 the
sigma model is equivalent to a theory of free fermions and the beta function has
zeroes at these values of ¢g; n is the quantized coupling constant of the topo-
logical WZ term. In fact, there is a nontrivial Wess-Zumino term on the black
hole background. Its existence is strictly related to the fact that the horizon of
Euclidean black holes has S? x S! = Y topology. There is a WZ term if the third
homology group of Y is nontrivial: H3(Y) = Z. It means also that there is a

closed but not exact form on Y which locally can be written as d B. An example
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is easily constructed: dB = dt Aw, where t is an “angle” on S! and w is a volume
2-form on S%. B is then given locally as tw. This leads to quantization of the
coefficient of the WZ term. By standard arguments the topological coupling is
unrenormalized. It means that when the “metric” coupling ¢ is renormalized it
depends on the “bare” coupling go and the integer WZ coupling constant n. It
may happen then that the beta function will have isolated zeros which asymp-
totically are g2 ~ 1/n. This would lead to the quantization condition for the
characteristic length scale of a black hole: R* ~ n. But now we have two mass

scales in the problem: Mp; and Mg.

Concluding, we would like to point out that the Hawking effect is a pure
classical effect in string theory but is completely nonperturbative in o' due to
instantons. The R? x S? topology of black holes plays a fundamental role in
establishing their instability in string theory. String theory allows for a qualita-
tive description of black holes with small masses and seems to predict topological
black hole solitons which would not decay into string theory massless “mesons”.
One may expect that those objects have a size comparable to the compactification

scale and therefore would be effectively 10-dimensional.
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