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Summary. A new general relativistic many-body effect is described.
It results in an unexpectedly large relative acceleration between
neighboring test particles that follow an inclined orbit about a
rotating mass. The effect vanishes if the orbit coincides with

the equatorial plane of the rotating mass. The existence of this
effect is due to a small divisor involving the deviation of the
orbital frequency measured by a comoving clock from the freguencv
measured by an inertial clock. The influence of the rotation of
the Sun on the Earth-Moon system is investigated, and it is

shown that the new effect causes a harmonic variaticn in the Earth-
Moon separaticn with an amplitude of order one meter and dominant
periods of 18.6 years, -~ 1/2 year, 1 month and - 1/2 month. The
confirmation of these results by the lunar laser rancing experi-
ment would provide a significant new test of general relativity

and a measurement of the angular momentum of the Sun.



The close analogy between Newton's law of gravitation and
Coulomb's law led Holtzmililler to postulate the existence of a
gravitational "magnetic" field in addition to the Newtonian
"electric" field /1/. The precession of planetary orbits in the
gravitational "magnetic" field of the Sun were calculated by
Holtzmiiller /1/ and Tisserand /2/, and attempts were made 'to
reconcile the Newtonian theory of gravitation with the excess
perihelion precession of Mercury on the basis of the new hypo-
thesis. With the advent of general relativity, the excess peri-
helion motion of Mercury was explained by Einstein as being due
to the post-Newtonian spherical field of the Sun. Moreover,
Thirring and Lense /3/ investigated the gravitational "magnetic”
field generated by a rotating mass and showed that the peri-
helion precession due to the rotation of the Sun is retrograde
and much smaller than the post-Newtonian effect.

According to general relativity, the various effects asso-

ciated with the motion of a particle in the field of a rotatirn
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mass may be attributed to the phenomenon of the dragging of the
inertial frames. A rotating mass drags the local inertial framss
around itself with resmect to the inertial frame of the static
Observers at infinity, since the dragging fregquency falls off
rapidly with the distance away from the mass. In the lowest
order of approximation, the dragging freguency reduces essentially
to a gravitational "magnetic" field.

Let us now consider the relative acceleration of neigh-
boring test particles in the field of a rotating mass. The re-

sult consists of the contribution of the 'spherical field of the



mass M, together with the contribution of the higher moments.
The dominant relative acceleration per unit separation of the test

particles due to the angular momentum J may be estimated to be

~ K,

Here W, is the Keplerian frequency of the test particles

around the rotating mass,

Wy = ’ (2)

so that 2=n ~w, is the period of the motion according to static
observers at infinity. Based on estimate (1), the relative accelera-
tions in the solar system due to the rotation of the Sun turn out
to be negligibly small /4/.

A new and remarkable result is discovered, however, when

one calculates the relative acceleration between neichboring

test bodies to all orders in M and to first order in J. The
dominant amplitude (per unit separation of test masses) turns out

to be /5/
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for a small inclination angle &« , & << 1, between the orbi-
tal plane and the eguatorial plane of the rotating mass. For
® = 0, i.e. when the orbit is in the equatorial plane,the domi-

nant amplitude is '“”Ko . The spacetime around the rotating mass



is described by the Kerr metric linearized in the angular momen-
tum parameter. The determination of the relative acceleration
between neighboring test masses amounts to calculating the tidal
matrix with elements
o v c

Kijm: va(W A (0) )‘(i) )‘P(o) b (i ! (4)
which are the "electric" components of the Riemann curvature
tensor as measured by an ohserver following the center-of-mass
of the system of test particles and carrying along it a parallel-
transported system of orthonormal spatial directions ("gyro-
scopes"). Here 71 1is the prover time alonc the path, Xtﬁ)zzdx%/ dx
denotes the vector tangent to the geodesic path of the center-
of-mass and A’:i) , 1 =1,2,3, denote the smatial directions. Let
us suppose that in the absence of rotation the center-of-mass
describes a circular orbkbit around M, tilted at a small ahgle & .

a

rthermcre, let r, t ard n be three orthogonal unit vectors

0

L
{n = r x t) along the orbit denoting the radial, tangential and

normal directions, respectively. The new unexpected terms in

the (symmetric and tracefree) matrix Kij are
aM \~
KAA =K.A = P 1
rn g =3 c*r K S'r‘(“’"“*"lo) ' (5)

where w 1is the prover orbital frequency

_1
u=w°(1_3GM )” , (6)
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i.e., 27/ w is the orbital period according to the proper
time of the orbiting observer, and n, is a constant. The re-
striction of equation (5) to small angles of inclination may be
removed by using the interesting work of Marck /6/, who has
given an exact expression for the tidal matrix of the Kerr metric
for an arbitrary timelike geodesic path. The result is that for
arbitrary « , one must replace « in equation (5) by essen-
tially sin o« .

The amplitude of the new term in equation (5) is propor-

2
tional to w, ¢ , where

¢ J
Mriu,
. . 2
is less than (or at most of order) unity, and w, is of the
order of the Newtonian expression for the relative tidal accelera-
tion per unit separation of the test masses. It is interesting

to note that & is indevendent of the speed of light,
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vation (5) is a vnurely ceneral relativistic effect: This off-

. i s s . . ~-7/2
cdiagonal tidal acceleration decreases with r as r /

anéd chances
sign if the sense of rotation of the source is reversed. The
independence of the new term from c¢ indicates that it could be
much larger than anticipated. Indeed, if « 1is not too small and
‘GM/czr << 1, the new effect could be far greater than the
ofiginal estimate given by egquation (1). The reason for this

may be traced back to the appearance of a small denominator,

W —w, , in the spatial tetrads. The existence of such a term

is not in conflict with the results of Fokker /7/ and Schiff /8/,



though the spatial tetrads describe the precession of gyro-
scopes along the orbit. This is because the new term contributes
only a very slowly varying part to the spin vector of a gyro-

scope. The magnitude of this almost constant vector for small «

is
3 GJ COS[(w-w)T ] 8)
= « . ’
2 Czrs W — W,

which is essentially «§ , up to a phase factor.

The new gravitational effect of a rotating mass has the
appearance of a resonance between the orbital freauencies w and
W . Thus it vaguely resembles the small divisor phenomenon
familiar from the Newtonian treatment of the gravitational many-
body problem. A classic example is provided by the Sun-Jupiter-
Saturn system: The two frequencies of orbhital motion around the
Sun are commensurate, hence a small denominator occurs in the
expression for the orbital perturhation of one planet due to the
other. It must be emphasized that while a similarity with a
known rhenomenon in Newtonian mechanics exists, there is hardlv
a one-to-one correspondence. The fundamental reason for the
existence of our new effect is the deviation of orbital frequency
according to a local clock from that determined by an inertial
clock.

To derive the astronomical conseaguences of the new effect, it
is necessary to develop a method for the approximate treatment of
the relativistic many-body problem. The methods alreadv available
/9-12/ are based on coordinate-dependent Newtonian concepts with-

out much regard for the truly measurable quantities. It is nossible,



however, to cover the spacetime manifold with intersecting Fermi
patches such that the application of the principle of equivalence
to each patch would lead uniquely to the physically significant
quantities. Consider, for example, the gravitational influence

of the Sun on the Earth-Moon distance. This distance is much
smaller than the Sun-Earth distance, hence a useful ¥ermi coor-
dinate frame can be set up along the (approximately) deodesic path
of the center-of-mass of the Earth-Moon system. The gravitational
field in this frame is mainly due to the Earth and Moon, together
with the perturbing influénce of the tidal field of the Sun.
Therefore, the influence of the Sun on the Earth-Moon distance
consists of a dominant Newtonian tidal part of order ~ (wo/f)o)zRo,
together with small relativistic corrections. Here ()o is the
orbital frequency of the Moon around the Earth and Ro is the
Earth-Moon distance. The influence of the post-Newtonian spherical

field of the Sun is, according to our analysis

(@)

which amounts only to a few centimeters. This is in contrast to

the assertions in the literature /10,11,13/, which claim that the
dominant perturbation in this case is %-(GP4//C21') Ro = 10C cm,
This result, which is independent of how strongly the Earth-Moon
system is bound, must be an artifact of the method of calculation..
It cannot show up in the Earth-Moon observations.

The rotation of the Sun causes a'harmonic variation in the

Earth-Moon distance with an over-all amplitude of



2
J=3¢p§<‘°°) R, ' (10)
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where o = 7 is the inclination of the ecliptic with respect

to the equatorial plane of the Sun and g = 5°

is the inclina-
tion of the Earth-Moon orbital plane with respect to the ecliptic.
The magnitude of the solar angular momentum is

J =1.7 x 10%8 3 gm cm? sec” ] ' (11)

where j is expected tobe of order unity /14,15/. Hence A = 1.4 j
meter, and the dominant frequencies in the orbital perturbation

are 7~Q°—wo—51—w r WA W " and -Qo , where 2n,/& = 18.6 yrs
is the period of the retrograde motion of the line of nodes in

the ecliptic. Thus the dominant periods are 18.6 years, -~ 1/2
yvear, 1 month, and ~ 1/2 month. This new one-meter effect is

due to a small denominator given bv w — w_  , as exnlained

befcre. Could the effect disappear because of friction in the
Earth-Moon system? The Moon moves away from the Earth by ~ 3 c¢cm
per vear due “to tidal friction. This implies a damping coeffi-

cient of [ = 2.4 x 10—18 sec_1, to be compared with w — w, =

3 x 10_15 sec-1. It appears, therefore, that the various effects
in the Earth-Moon system will not alter our estimate (10) and
that other small perturbations in the orbit superpose linearly
with the new effect.

In the 1lunar laser ranging experiment /16/, the distance

from the McDonald Observatory in Texas to retroreflectors on the



/ 8

Moon has beenmeasured with an accuracy of ~ 10 cm. The net rms
residual for the vast decade corresponding to the difference be-
tween the observed and predicted ranges is, however, ~ 40 cm.

It appears, therefore, that this experiment is capable of testing
our theoretical predictions by incorporating a new force given

by equation (5) in the theoretical model for the Earth-Moon system,
thereby determining the new parameter j from a least-scouares fit
to the data. The confirmation of our theoretical results by

the data would provide a significant new test of Einstein's

theory of gravitation and a direct measurement of the angular

momentum of the Sun.
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