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ON "NEGATIVE" MASS IN THE THEORY OF GRAVITATION

By J. M. Luttinger
Assoclate Professor of Physics
University of Wisconsin, Madison, VWis.,

The purpose of thls brief note is a critical survey of the idea
of "negative" mass in the theory of gravitation. In reading Richard .
Ferrell's prize winning essay "The possibility of New Gravitational Effects,
I found a basic confusion as to how such a "negative' mass would behave,
and since subsequent discussions have convinced me that this confusion
1s wildespread, I have taken this opportunity to attempt to clarify the
issue,

The role which "mass" plays in the general theory of relativity is
quite different from the "mass" of ordinary Newtonlan mechanics and
gravitation. It will be remembered that the true starting point of
general relativity wes noticing the equivelence of "inertial" mass (that "
i, the mags occurring in Newton's law of motion F = ma) and "Gravitational
ma%f {that 1s, the mass occurring in Newton's law of gravitation F =
- Gmm/,2 ), This fact is, so tc speak, built into the general
theory of relativity. The result is that in discussing the motion of
a mass point in general reletivity the mass of the particle never appears.
In the Newtonlan case, on the other hand, the mass of the particle
appeared on both sides of the eauations, and then cencelled out due %o
the apparent fortuitous eausllity of inertial and gravitational masses.

One can then ask: 1In view of this, how does mass enter into the general
theory of reletivity at all? The answer is that 1t enters in when we wish
to discuss the field produced by an 1solated material point. This sol-
ution of the partial differential equations of the gravitational field
was first obtalned approximately by Elnsteln and leter exactly by
Schwarzchild. This solution contains two arbitrary constants of inte-
gration. One is usually eliminated by requlring the gravitational field
to be zero at infinity. The other is obtained by the requirement that
sufficiently fer away (i. e. when the gravitational field is weak encugh)
we must once more have Newton's law of gravitatlon, This enables us to
determline the constant of integration in terme of the mass of the parti-
cle giving use to the fleld. Eaquivalently we may say that the mass of
the particle is determined by the constant of integration. Now this is
very striking, because this constent of integration is in principle
completely arbltreary, and therefore the resulting mass is completely
arbitrary; ang positive or negative number whatscever. That is, genersl
relativity no more than Newtonlan gresvitatlionsl theory is capable of
explaining the fact that sll observed magses are positive., In other
words, general relativity does not prohibit the existence of negative
masgses, even though such masses have never been observed. Up till now

we agree with the statements of Ferrell; it is in the interpretation of
what this negative mass means thet we find a different result. We assert
the following: A positive mass does not necessarily repel a mass which
is, in the sense of general relativity, negative. The reason for this is
as follows: The principle of equivalence of general relativity reaculres
thet the inertial mass equals the gravitational mass. If we take a
particle with negative gravitational mass, then we must also take 1ts in-
ertial mass negative. A careful reading of Ferrell's paper shows that he
defines negative mass as gravitational mass and linertlal mass equal and
opposite, a definition which is impossible according to the general theory
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of relativity. As an example, let us study in some detail the actvel m
motion of two particles, one of which has a mass m and the other a mass
~m., Let them start from rest, and let thelr positions along the line
Joining them be giwen by xj and xp respectively.
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Now we know that if we are not interested in extrermely small corrections

we may use Newton's laws to describe the motion. These are for our case
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where G is the gravitational constant., Simplifying we obtain
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Now if we subtract the first of these equations from the sécond we
obtain:
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This equation may be integrated at once, and ylelds
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where a and b are constants of intepration to be fixed by the initial
positions and veloclities of the two particles. Since we assumed the
inltial veloclties to be zero we get b = 0, and a will represent the
initial distance the particles are apart, We have x -~ x = a, That
is, the distance between the particles remains congtant. There ig no
trace of repulsion, Now this result may be substituted back in our
original equations, If we do this we ohtaln:
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We can describe the motion as follows: the particles remaln at a
fixed distance from cech other, but the whole system accelerates uni-
formly to the lecft with the constant acceleration Eg .
f 2 X3
lhus we see that for two masses starting from rest, one negative and
the other positive, there is no repulsion at all between them but only
the rather dueer motion described above. The results of Ferrell would
be obtained if one usad the equetions of motion®
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which are equivalent to
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or Xxj+ X constant, Thils means that the center of gravity stays fixed,
as uescr bed by Ferrell, Similarly to the treatment given for the correct
equations, cne can easily show that these equations do give a repulsion
between the particles. As pointed out above, however, these equations

are in contradiction with the most basic princinle of general relativity,
the principle of equivalence.

In view of this result, we can ask if we have to ahandon hope for
the possibldity of a gravitationel shield, even if a nagative mass should
be dlscovered in nature? The angwer is no, if the negative mass ig larg-
er than the mass we wish to repel. To gsee thls, et ue go back to our
0ld example, but now take the masses different. Let the positive mass De
n as before the negative mass -M, The resulting equationg of motion are

*It is perhaps not without interest to note that these same eaquations
would be obtained for the interaction of two negative masses, Thus two
negative masses would repel each other in geners-l relativity.



Lp'

/) a2, - 4 Gm(-M) # d7, . GHM .
d¢+ /Y, —x, 1> dZ2 /x’ -,
a3 - E% 7
9% - - Gl M) A "—“/i ) Jy X, 1
/—1”2) e )X, =X, )2 d s’

If we subtract the first of these equations from the second we ohtain
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Now x» — x7 1s Just the distance between particles., Call it r. Then
the dffferential equation for r is

2
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This 1s a very well known equation, and we shall not describe 1ts inte-
gration here. The result of one integration is

where ¢ 1s a constant, If the particles are initially at rest and sepa—
rated by a distance R, then
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Since (ng- is slweys greeter than zero, the right hand side of this
equation must be greater than zero. We have three cases to consider.
(1) M greater than m. Then r must be greater then R and we see thot we
have repulsion slnce the distance tends to increase.
(2) M less then m, Then r must be less than R, and we see that there is
attraction. Actually, a more careful investigation shows that the attracé-
tion lasts until the particles pass through one another (if they can), end
then 1t i1s replaced by repulsion.
(3) M equal m. This is the case discussed previoutly, when there is
neither attraction nor repulsion,

Thus we see that & large negative mass could act as a neutralizer of
gravitation, but the size of the negative mass necessary depends on the
mass of the objJject one wants to free from 1ts gravitational bonds.



