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Abstract

The magnetically charged Reissner-Nordstrom black hole solutions of Maxwell-Einstein
theory cannot evaporate completely, because their Hawking temperature tends to zero as
their mass to charge ratio approaches unity. This situation changes when these solu-
tions are considered in the context of a non-Abelian gauge theory containing nonsingular
magnetic monopoles. If the horizon is sufficiently small, the Reissner-Nordstrom solution
develops a classical instability and evolves into a new type of magnetically charged black
hole solution. The temperature of these new solutions increases monotonically as the hori-
zon contracts, so that there is no obstacle to the complete evaporation of a magnetically

charged black hole.
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The Reissner-Nordstrém solutions of the Maxwell-Einstein equations describe black
holes carrying electric or magnetic charge. These objects can radiate via the Hawking
process [1], as do the uncharged Schwarzschild black holes. However, their Hawking tem-
perature, while inversely proportional to their mass for large mass, falls to zero as the black
hole approaches the extreme Reissner-Nordstrém solution, for which the mass to charge
ratio is unity in Planck units. As a result, instead of evaporating completely, as uncharged
black holes apparently do, these appear to be eventually stabilized by the conserved charges
which they carry.

The existence of light electrically charged particles drastically changes this picture for
electrically charged holes [2]. Long before such a hole reaches the extreme solution, the
electric field outside the horizon becomes strong enough to copiously produce electron-
positron pairs. The particles with the same charge as the hole are then repelled, while
those of opposite charge fall into the hole. This process eventually neutralizes the hole,
thus removing the obstacle to complete evaporation. One might imagine that a similar
process effect could lead to the discharge of magnetically charged holes, provided that the
magnetic monopoles — if any such exist — were light enough that pair production could
take place, but that for larger monopole masses the extreme magnetically charged hole
would be stable. However, as we will describe in this paper, this is not the case.

To sensibly discuss magnetically charged black holes, one should do so in the context
of a theory containing magnetic charges. The simplest such theory is a non-Abelian gauge
theory with an SU(2) gauge symmetry which is spontaneously broken to the U(1) of elec-
tromagnetism when a scalar field ¢ acquires a vacuum expectation value of magnitude
v. The elementary particles of this theory include the massless photon, two spin-1 gauge
bosons with electric charges +e and mass my = ev and a neutral spin-0 particle, corre-
sponding to the ¢ field, with mass mpy. This theory also contains magnetic monopoles
[3] with magnetic charges +/i/e and mass M., ~ hv/e. These arise as solutions of the
classical field equations. Within a core of radius ~ %/(ev) these solutions have nonzero
values for all of the gauge fields while the magnitude of ¢ is not equal to its vacuum value.
Outside this core, there is a Coulomb magnetic field, but, except for exponentially falling

tails, the massive gauge fields and the scalar field take on their vacuum values. Because the
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Compton wavelength A/M,,,, is much smaller than the radius of the monopole core (for
e?/h much less than unity, which we will assume throughout), quantum fluctuations do
not significantly change this picture and the monopoles survive as particles in the quantum
theory.

The Reissner-Nordstrom solution is readily incorporated into this theory. We recall

that the magnetically charged solution of the Einstein-Maxwell equations is described by

the metric
ds® = —C(r)dt* + A(r)dr® + r?dé® + r* sin® §d¢* (1)
with
2MG  4nrGQ3
Cr)=AT'(r)=1-""—+ ”T?M (2)
and has a radial magnetic field with magnitude
Qum
B(r)=—% (3)

There is a true curvature singularity at r = 0. This is hidden within a horizon at r = ry =

GM + /G2M? — 47rGQ?%, provided that the mass M is greater than the critical mass
M., = \/LW of the extreme black hole; for M < M., there is a naked singularity.
With Qu = h/e, this is also a solution to the full non-Abelian gauge theory, provided
that the scalar field ¢ is set equal to v everywhere and that the fields corresponding to the
charged gauge bosons vanish identically.

It is instructive to analyze the stability of this solution [4]. This can be done by
considering small fluctuations about the static solution and looking for modes which grow
with time. In the linearized approximation the equations separate into three decoupled
sets. The first, involving the perturbations of the metric and of the electromagnetic field,
are the same as the ones encountered in studying the pure Maxwell-Einstein charged
black hole, which has been shown to be stable [5]. Next are the equations governing the
fluctuations of ¢; it is rather easy to show that these never have growing solutions. Finally,
there are the equations for the fluctuations in the charged boson fields. When the horizon
distance is greater than h/(ev) the stability of these modes is manifest. However, growing

modes appear as the horizon becomes smaller than this. Specifically, there is an instability
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if rg < bh/(ev), where b > 0.32 for M > M., while b - 1 as M — M,,. (For a multiply
charged black hole with Qs = nh/e, the instability sets in for horizon sizes smaller than
\/nbh/(ev).) Physically, the instability is due to the formation of a charged boson field
configuration just outside the horizon with its magnetic moment aligned along the magnetic
field of the monopole. For small enough horizons, this is energetically favorable, since the
energy gained from the cancellation of the magnetic Coulomb field at small r is more than

that needed to create the charged boson fields.

It should be stressed that this instability is purely classical, as compared to discharge
by quantum mechanical pair production of magnetic monopoles. One finds, for example
[6], that the magnetic fields outside the horizon are strong enough to produce such pairs [7]
only when the horizon is smaller by a factor of e/v/% than the value where the instability

sets in.

This instability drives the Reissner-Nordstrém solution to a new type of magnetically
charged black hole solution which may be best described as a black hole inside a magnetic
monopole [8,9]. In these solutions the various matter fields have a nontrivial behavior
outside the horizon which resembles that in the corresponding regions of the flat-space
monopole solution. Although one might expect that such behavior would be forbidden by
a no-hair theorem, none of these theorems apply to this case. However, similar methods
can be used to show that for solutions of this type to exist the horizon distance ry must be
less than the greater of h/(ev) and h/mpy [8]. The area of the horizon for these solutions
is always larger than the area of the Reissner-Nordstréom solution of the same mass and
charge. Hence the instability of the Reissner-Nordstrom solution and its evolution to these
new solutions are consistent with the law of increase of area for classical evolution. Because
the usual relationship between entropy and horizon area holds for these new solutions, this

evolution also gives an increase in entropy.

The horizon and singularity structure of these new solutions resemble those of the
Schwarzschild metric rather than the Reissner-Nordstrom metric. There is only one hori-
zon, and a physical singularity at r = 0. As with the Schwarzschild solution, this singularity

is spacelike. More importantly for the present discussion, the Hawking temperature, given
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Ty =1
"7 4r VaC|,-,,

increases monotonically as the horizon distance is decreased, and goes to oo as ry — 0.

(4)

We are now in a position to describe the history of a magnetic black hole. Such an
object might form by the collapse of a massive object containing a magnetic monopole.
After collapse the system eventually settles down as a Reissner-Nordstrom black hole.
Gradually, Hawking radiation lowers the mass and causes the horizon to move inward,
with the solution remaining Reissner-Nordstrom. As the horizon falls below %/(ev), the
classical instability causes the first glimpse of a monopole core to appear outside the
horizon, and the solution begins to deviate from the Reissner-Nordstrom form. With
continued evaporation the horizon moves inward, the Hawking temperature increases, and
more of a monopole core is revealed. Eventually the horizon shrinks to within a Planck
length, and the black hole presumably evaporates, leaving behind a nonsingular monopole
indistinguishable from the one which fell within the emerging horizon long before. Thus,
contrary to previous belief, possession of a magnetic charge does not save a black hole from

eventual evaporation.
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