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Summary

We propose a new test of the Einstein Equivalence Principle (EEP) called a
null phase—delay experiment, in which the phase-delay of a signal propagated over a
coil of optical fiber is monitored as the gravitational field at the coil is varied. Any
variation of the phase—delay would signal a violation of the EEP. An interesting test
of the EEP in the solar gravitational field can be performed in the laboratory under
carefully controlled conditions. With presently available téchnology, we show that

such an experiment could provide a 0.01% test.
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Abstract

The Einstein Equivalence Principle (EEP) provides the fundamental basis for
any metric theory of gravity, such as general relativity. It implies that the only ob-
servable effects of gravitation are those mediated by the spacetime metric. Therefore,
at the origin of a local freely falling frame there should be no observable effects of
gravity. Null redshift tests provide an interesting way to test this prediction. In
this test, the frequencies of two oscillators of a different type are compared at the
same location in a gravitational field as the field is varied. Any variation in the
frequency would signal a violation of the EEP. Here we shall propose a new test of
the EEP called a null phase—delay experiment, in which the phase-delay of a signal
propagated over a coil of optical fiber is monitored as the gravitational field at the
coil is varied. An interesting test of the EEP in the solar gravitational field can be
performed in the laboratory under carefully controlled conditions. With presently

available technology, such an experiment could provide a 0.01% test.



The Einstein Equivalence Principle encompasses three invariance principles for
gravitation: 1) the equality of free—fall, 2) local Lorentz invariance, and 3) local
position invariance [1]. The third principle (LPI) can be tested in a null gravitational
redshift experiment [2]. If we denote the frequency of an oscillator infinitely far from

a gravitating body by fo, then its frequency when a distance r from the body is given
by

f(r) = foll —aU(r)], (1)

to first—order in the Newtonian potential U(r), defined positive, and where « is a
parameter. (For convenience, we use units in which G = ¢ = 1). If LPI is valid,
then a should be the same for any oscillator (a = 1 in general relativity). This
prediction can be tested by comparing the frequencies of two different oscillators

side-by-side in a gravitational field. The difference in their frequencies is given by

Af(r) = fa(r) — fi(r) = foll — (@2 — aa)U(7)], (2)

where we assume that each oscillator has the same frequency fo at infinity.

Equation (2) has been tested in the gravitational field of the Sun by monitoring
the frequencies of two oscillators in a laboratory [3]. Variation of the solar gravita-
tional potential was provided by both the rotation of the Earth and its motion in
an eccentric Keplerian orbit. The accuracy of the experiment was limited by the
long-term frequency stability of the oscillators. By using a hydrogen maser and a
superconducting cavity stabilized oscillator (SCSO), Turneaure and his colleagues

obtained the limit |Aa| < 1.7 x 1072, or slightly better than a 2% test.
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Recently, a group at the Jet Propulsion Laboratory (JPL) has been developing
a new test of local Lorentz invariance (LLI) involving time and frequency technology
available in the NASA Deep Space Network [4]. In the experiment, two widely sep-
arated hydrogen masers (several kilometer baseline) are used to monitor the phase—-
delay of a signal propagated directly from one maser to the other along a fiber optic
link. Thei velocity of the system in space is varied by letting the Earth rotate. A
diurnal variation in the phase—delay would signal a possible violation of LLI. Because
of its small temperature coeflicient, optical fiber provides a highly stable link between

the masers [5].

This type of instrumentation, differently configured, could also be used to per-
form a new test of LPI: a null phase-delay experiment. The schematic in Fig. 1
shows how to measure the phase—delay of a signal propagated over a certain length
of optical fiber, which has been wrapped into a tight coil. Only a single frequency
standard is necessary, which we have assumed to be a hydrogen maser oscillator. The
100 MHz output frequency of the maser is split into two signals. One signal is fed
directly into a network analyzer, or an equivalent device to measure phase. The other
signal is fed into a fiber optic transmitter and used to modulate a laser carrier which
is propagated along the fiber to a fiber optic receiver, which feeds the signal into the
other port of the network analyzer. For a length L of optical fiber, the measured
phase—delay is given by A¢ = fl/c, where f is the output frequency of the maser and

we have defined [ = nL for a fiber with an index of refraction n (typically n = 1.43).

If the EEP is valid, then in a local freely falling frame (LFFF) we would expect
A¢ to be independent of gravitational potential. In fact, in any metric theory of
gravity each of the quantities f, [, and ¢ would depend upon gravitational potential

in such a way that it completely cancels—out when A¢ is computed in a LFFF. A

—4 -



nonmetric coupling to the physical laws governing the frequency of the maser, or the
length of the fiber optic cable and its index of refraction, could disturb this precise
dependence and lead to locally observable effects on A¢. (This can be demonstrated
explicitly in the THeu formalism, for example [6].) We can parametrize this depen-

dence by expressing f, [, and ¢ in terms of U(r) according to

f(r) = fo[l — asU(r)], (3a)
I(r) = o[l - aU(r)), (3b)
c(r) = co[l — aU(7))]. (3¢)

Using these relations to compute A¢, we obtain

Ag(r) = [1 = (a5 + a1 — ar)U(r)]| Ao, (4)

to first—order in U, where A¢q = folo/co. If the EEP is valid, then ay + a; — a=0.

This can be tested by monitoring A¢ as U(r) is varied.

This experiment can be performed in the laboratory under carefully controlled
conditions to minimize unwanted phase errors. It is possible to coil several kilometers
of thin optical fiber onto a spool, which can be kept in a thermally controlled chamber
to minimize the effect of temperature variations on the length of the fiber. For 10
kilometers of fiber and a 100 MHz signal, we obtain a phase-delay of A¢g = 1.7 x 10°
degrees. Phase rﬁeasurements with a resolution of 1 microdegree would provide a
limiting sensitivity of 6 x 10712 for a 10 km fiber. The diurnal variation in the solar

gravitational potential is of order |AU| = 10713, However, we can obtain a larger
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variation in the potential as the Earth travels in its eccentric orbit (e = 0.0167).
Between perihelion and aphelion, the variation in U(r) is nearly linear and is of order
|AU| = 3 x 1071%¢ for ¢t in solar days. In slightly over a month, we would have
|AU| = 10710, At our limiting sensitivity, this would provide better than a 1% test
of Eq. (4). For 100 km of fiber, there would result a 0.1% test. By increasing the

signal frequency to 1 GHz we could push this limit to 0.01%.

A possible source of systematic error is an uncontrolled temperature drift af-
fecting the length of the fiber, despite attempts to maintain the fiber at constant
temperature. However, we can measure small temperature variations and then cor-
rect for their effects on the phase-delay. For a fiber with a temperature coefficient
of delay (TCD) of 107 per degree Celsius and thermometry to a precision of 1 mi-
crodegree. Celsius, we could keep the error below the assumed limiting sensitivity of

the experiment.

A more serious error source is linear drift of the maser frequency, which would
produce a phase error of §¢ = (6f/f)Ado. A typical drift-rate for the hydrogen
maser is 6f/f = 107!* per day. By comparing this to the rate of change of the
solar gravitational potential, 3 x 10712 per day, we see that we would be limited to
a 0.3% test. This could be improved by using a trapped-ion frequency standard,
which has better long-term stability [7]. It is possible to keep the drift-rate below
§f/f =3 x 1071%, which would provide our goal of a 0.01% test.

To summarize, we have shown that a test of the Equivalence Principle to 0.3%
could be performed by monitoring the phase-delay of a coil of optical fiber for 1
month in the laboratory, assuming 1) phase resolution of 1 microdegree, 2) 100 km
of fiber, 3) 100 MHz signal, and 4) maser frequency—drift less than 1 part in 10*

per day. A 0.3% test would provide a factor of 5 improvement upon the result of
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Turneaure et al. However, a 0.01% test could be achieved by increasing the signal
frequency to 1 GHz and reducing frequency drift to less than 3 parts in 10'® per
day with a trapped—ion frequency standard. A 0.01% test would exceed the result of
Vessot’s 1976 spaceborne maser experiment [8], which was limited by a transmitter

failure to a 0.02% test.

The research described in this report represents one phase of research performed
at the Jet Propulsion Laboratory of the California Institute of Technology, which is

under contract to the National Aeronautics and Space Administration.
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FIGURE CAPTIONS

Fig. (1) Schematic for measurement of the phase—delay of an optical fiber of length L

km, which has been wrapped into a tight coil.
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CAN GRAVITY BE A THERMAL RESERVOIR?

Carlos E. Laciana
Instituto de Astronomia y Fisica del Espacio
Casilla de Correo 67-Sucursal 28, 1428 Buenos Aires, Argentina
E-mail:laciana@iafe.edu.ar.

It is shown, in an isotropic universe, that the quantum conformal fluctuations
of the metric can play a rol analogous to the fictitious field of Thermo Field Dynam-
ics (TFD) of Takahashi-Umezawa [1], when a massless scalar field minimaly coupled
to gravity is regarded as matter content. Moreover, by means of an extremum con-
dition on the entropy and the energy, a thermal spectrum for the created particles

1s obtained.

- In the black body problem, the thermalization of photons in the cavity is
produced by the interaction with the quantum oscilators of the wall. In the TFD of
Takahashi-Umezawa the effect of the walls is replaced by the quantum fluctuations
of the reservoir [2]. This theory allows to us calculate mean values of physical
observables as vacuum expectation values of quantum operators. The vacuum used
is a superposition of states of an extended Fock space. This new Fock space is
a direct produt of the physical states and fictitious states representatives of the
thermal reservoir. Israel [3] found a paralelism between this approach and the
problems where an event horizon is present, as for example the Rindler observer or
the black hole radiation. In both cases there are hidden modes in the other side
of the horizon. This hidden modes play a rol analogous to the fictitious modes of
TFD. We can ask about why the hidden states can affect the distribution in the
observable side of the universe. The answer, as is remarked by Israel, is related
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to the analytic extension of the metric, performed out side the horizon, which is
related to the symmetry between the two kinds of modes. Similarly form in ref. [4]
it is shown for the case where there is not a horizon, and anyway we can separate
the modes symmetrically and construct thermal states as in TFD. The case studied
in that reference is the scalar field in an isotropic curved space time. There we have
neither fictitious nor hidden degrees of freedom, but anyhow again it is possible to
get a thermal distribution, as in TFD. In ref.[4] a fictitious separation of modes
is made. The observer can see the other side of the space but not ‘look’ there in
the observation. In the present work we have another situation, there are neither
fictitious nor hidden modes and all the modes of the matter field are observed, the
rol of the fictitious modes of TFD is played by the quantum fluctuations of the
gravitational field. The gravitational field modes act as the oscilators of the cavity
in the black body problem.

In the context of TFD, the operators of the thermal Fock space, are introduced.
We will call these operators a'g (8 = 1/kpT), which act on the thermal ket (at
temperature T'). The operator alg is written as a linear combination (Bogoliubov
transformation) of the creation-annihilation operators at § = oo (T = 0), i.e.

aip = ax cosh 6(k, B) — &l sinh 6(k, B) (la)
dxp = ax cosh 0(k, ) — a’i sinh 4(k, B) (1b)
where T' =0 correspondé to 8 = 0 and the operators satisfy:
afijnk >= (nk + 1) |nge +1 >
ax|nk >=n Mk —1 > (2)

with ny = 0,1, ..., and analogously the ?1;2 and dy operators that act on the
states [fix >, also a'x g and ax g on |nk, S > and &L’ﬂ and dg g on |fik,g >. In this
approach the following extended Fock space is introduced

[n, 7 >=|n > Q|n >

which we will call simply |n >.
As it is shown in ref.[2] the following relation is valid

aTk,ﬂ|0,,3 >= —nk—1/2&k|0,ﬂ >= (nk + 1)—1/2a1k|0,,3 >= IO +1,8 > (3)
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In this context the average number of particles with momentum k and temper-

ature 7T is
ny :=< 0]axgtaws|0 >= sinh?6 (4)

From eq. (3) we can interpretate the creation of one thermal state as related
to the annihilation of one ‘hole’, as we can see from the term with operator dx.
The total hamiltonian for free fields, as is proved, in TFD has two quantum con-
tributions, one of them corresponds to the matter field, and the other one to the

reservoir. The total hamiltonian is equal to
H=H-H+C (5)

with C a c-number (in the terminology of ref.[2], we can say that His weakly equal
to H — H).

The explicit form of the two operators of eq.(5) are

H = Z eka;r(ak (6a)
k

H= Z eka}:&k (6b)
k

The total hamiltonian H is invariant under the transformation given by eq.(1).

As an example of system plus reservoir, we will considered a scalar field min-
imaly coupled to the gravity. The quantum behaviour of the reservoir will be
described by the quantization of the conformal fluctuation of the metric. Why only
the conformal degree of freedom?. Firstly by simplicity. Moreover, as it is known,
for a general fluctuation the causal relation between two space-time points is not
invariant because the light cone structure is not preserved under the fluctuation,
‘this does not occur when the fluctuation is restricted to the conformal one [5].

Similarly as in reference [6] we can represent the metric g,, as a conformal
perturbation of the background ¢° uv» Dy means of the transformation

14

Guv = goxw expu, g* =g exp(—u) (7)

Using the calculations of ref.[7] with the convention used by Birrell and Davies

[8]-

The Einstein equation, for the metric g,,, with matter source is
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When the transformation given by eq.(4) is performed, we get [6]:

G°,, = —8xGT*),, (9)

with T¢/-,, =TM,, +TY,,, G°,, the Einstein tensor for the ‘metric’ 9° 0

and T, is given by
1
TG;W = (47"G)_1/2Duu¢ - (6u¢8u¢ - é‘gopua)\(ﬁa}\‘ﬁ) (10)

with Dy, == v,V, + g%N"Vx and the rescaling ¢ := (167G)/%u. As is
shown in ref.[6] the field ¢ satisfies the equation

V'V, é(z) = J(z) (11)

with 5
J(z) ~ -—5(167TG)1/2R°(30)

in the last equation the term of order G? respect to G*/? is neglected
; g

R is the scalar curvature of the metric ¢°,,. Then the general solution of
eq.(11) can be written in the usual form

e) = (@) + [ die'Gr(a,0) (=) (12)

where each part satisfies
V'V, (z) =0 (13a)
v'v,G Y (z,2") = §4(z — x/) (13b)

We can now make the usual in-out second quatization of ¢° field, with the condition
that the source J is a classical one with zero limit at infinity. Then we can introduce

the operator
TG :=T%,,[¢"] (14)

In the particular case that ¢° represents a homogeneous perturbation of an isotropic,
Friedmann-Robertson-Walker (F-R-W) metric, we can expand ¢° in spherical har-
monics {Yx(z),Y*k(z)} when the metric is closed, and as plane waves when the

metric is flat:
P(e,0) = [ @HanguduO¥i+ " (DY (o)
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We can introduce moreover the operator

~

¢=¢"+¢' 1 (15)
with ¢! = [d*a'G™(z,a")J(z'). By substituting eq.(15), in eq.(14) we get
TS = Cuy — T8 (16)

where C),, is a c-number with the form

1
Cuv = (47G) 72", J () + (47G) 77,0, — (048" 000" = 56°,,, 076" Or0")
(17)
and )
Tpy = 0,8"0,8" — 50,0767 0x¢" (18)

- It is interesting to note that eq.(18) is equal to the one corresponding to a
scalar field minimaly coupled to gravity (given by ¢° uv) and the field #° satisfies
the same equation (13a) that a minimaly coupled massless scalar field. The effective

energy-momentum tensor operator can be written as
fef. _ M _ A0G
Tel =TH —T)7 + Cuy (19)

The equation for the metric hamiltonian (which is in this case equal to the

canonical one), is then

H=H-H+H (20)

where H := VTyo, H :=VITM, H=VTIC H; = VCo.

In F-R-W metrics V.= 2n%a®, (with a the scalar factor of the metric). If
TM ,, corresponds to a minimaly coupled massless scalar field, then it has the same
functional form as T°¢,,. When we choose the base of solutions that diagonalizes
‘the hamiltonian, the functional form given by eq.(6) (with € = %) is obtained.
Moreover in terms of a base of solutions of the field eq.(13a), the condition of
the diagonalization of the hamiltonian selects the modes with periodicity in the
conformal time, which is analogous to the condition used in the black body problem,
when the periodicity of the field on the walls of the cavity holds. Then we have
‘a complete identification between the fictitious modes of TFD and the conformal
quantum fluctuations of the metric.The Fock space related to the modes of the
matter field is independent of the one related to conformal fluctuations of the metric.
Then it is possible to construct the thermal states in a way analogous to TFD. But

)



in our case the modes ™ have a physical meaning, because they are related with the

creation-annihilation operators of the quantum fluctuations of the metric.
Analogously as in ref.[4], we can impose the extremum condition on the ther-

modinamic potential, respect to the parameter 6, which labeled the Bogoliubov

transformation that connects two in-out Cauchy surfaces;

§A
2 22
with )

A=< OI—EK + H|0 > (23)

The vacuum < 0| is at § = 0. 3 is a Lagrange multiplier. K is the entropy

operator introduced in ref.[1], as a funtion of the operators axg

K= _Z{akﬂfakﬂ log sinh®§ — akﬂakﬂT log cosh?6} (24)
.

The variation of A gives us a planckian spectrum of created particles of the matter
field, i.e.
ehe

T (25)

Nk
where ny satisfles also eq.(4) and represents the average number of created
particles between the states |0 > and |0, 3 >, due to the interaction with the gravi-
tational field. If we want to reobtain the thermal radiation contribution to Einstein
equation (with units such that ¢ = 1,h = 1(h = 27),kp = 1), as in equilibrium
eq.(25) can not depend on the scale factor of the universe a, and moreover h would
have to appear in the exponentials then # = 27a. But § = —71: where T is the
temperature at the equilibrium. This value of the temperature is coincident with
the one coming from the standard phenomenological, radiation-domined Friedmann
cosmology [9].

The result given by eq.(25) is coincident with the one obtained in ref.[4]. But
with a conceptual difference. In ref.[4] the two Fock subspaces correspond to two
disjoint sets of particles with momentum k and —k respectively. In order to compare
with the result of ref.[4] we can associate to each subspace one space of conformal
modes k of the gravitational field and one with —k respectively. Then we would
have two thermal spectra, one related with the particles with momentum k and the
-other with the ones with —k.

It is important to note that in the last process the problem of infinite particle

creation was bypassed. In our case we use the diagonalization of the hamiltonian as
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a criterium to choose the particle model, although there is a hard criticism in the
literature about that (see for example ref.[10]). But in all the cases where infinites
appear perturbative expansions are made. Probably some terms, important in order
to make the series convergent, are lost. However in our calculation the determination
of the particle creation number it is exact because it is obtained by means of eq.(22).
Our procedure is also very diferent, because eq.(22) gives us an extremum condition
for the entropy and the energy.

A physical consequence of TFD to cosmology is the interplay between the
energy of the matter field and the gravitational field. As we can see from eq.(20)
the hamiltonian is weakly equal to the diference between the hamiltonians of matter
and gravity. Therefore the eigenvalue of the total hamiltonian is weakly null, and
this result is invariant respect to the Bogoliubov transformation given by eq.(1).
Moreover as we can see from eq.(3) to the creation of one particle of the matter
field corresponds the annihilation of one conformal graviton. Therefore the energy
gained by the matter field is obtained from the gravitational field.

A comment about the entropy: the entropy operator, given by eq.(24), for the
gravitational field (f{) has the same functional form than K, but with the operators
a instead of a (see ref.[1]). Therefore, taking into account again eq.(3), the entropy
of the gravitational field is complementary to the one of the matter field. Then we
hope that reversibility may be themodynamically valid in this model.

It is an interesting attempt, for the future, to study the transition to thermal
equilibrium starting from a non-equilibrium TFD formalism (see ref.[11]), taking
into account other orders in the perturbative expansion of the conformal fluctuation

of the metric.
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