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General relativity is a classical theory of gravitation and spacetime. Perhaps
its most spectacular success is its application to the universe as a whole and the
related description of big-bang cosmology from an era of about 1073° seconds until
the present. Nonetheless, there are two major difficulties with the theory. The first
is a problem afflicting any classical theory, namely, whether it can be derived as the
classical limit of some consistent quantum theory. The second difficulty is that, even
as a classical theory, general relativity is deficient as a theory of spacetime because it
predicts the existence of singularities.

~ The singularity theorems of Hawking and Penrose [1, 2] assert that a spacetime
is geodesically incomplete provided that there is a reasonable sense of causality, that
the generic condition holds, that there is either a trapped surface or a general cos-
mological expansion, and that the timelike convergence condition holds. The latter

is the requirement that
R, k"k >0 (1)

is satisfied for arbitrary timelike vectors k#. In particular, the theorems imply that
the spacetimes associated with both gravitational collapse and cosmological expansion
are geodesically incomplete. In the standard examples, the Schwarzschild solution or
the Friedmann-Robertson-Walker universes, this incompleteness arises as a conse-
quence of the infinite curvature encountered along some spacelike surface. However,
the singularity theorems guarantee that this is a generic problem rather than some
difficulty arising from over-restrictive assumptions in the derivation of these particular
solutions.

The physical meaning of geodesic incompleteness is that a geodesic terminates at
a finite proper time in the past, in the future, or both. An observer moving along
such a geodesic would reach the boundary of spacetime. The problems posed by this
apocalyptic prediction of general relativity are insurmountable, at least within the
context of classical physics.

The physical reason for the singularity theorems is that gravitation is universally
attractive. Consider a congruence of timelike geodesics parametrized by proper time

s along the curves z#(s) with tangent vector k* = dz*/ds. The volume expansion



6 = V*k, of the congruence satisfies the Raychaudhuri equation [2]

do
== —Ru bR 4. 2)

The right-hand side of this equation consists of effectively negative quantities, with
the exception of the first term. The first term is also negative provided that the
energy-momentum tensor of matter obeys certain plausible conditions. Using the
Einstein equation

R,, — 3Rg,, = 81T, (3)

we see that Eq. (1) holds if
(Tuu - %Tguu)kuku >0 . (4)

This is the strong energy condition, satisfied for most forms of macroscopic classical
matter.

One might hope that an underlying quantum-mechanical description of gravitation
would resolve the issue of classical singularities. The only candidate theory available
at present appears to be string theory, which is based on the idea that the fundamental
structure of an elementary object is a two-dimensional world sheet (rather than the
one-dimensional world line of point particles) together with the principle of conformal
invariance. If the string world sheet ¥ has a metric +,;, carries coordinates £*,a = 1,2,
and has location in d-dimensional spacetime given by X#(£*), then its dynamics is

determined by the action [3]

I= o [ 7 (90X X g + 30T~ La'RP) . (5)

2ra!

Here, R® is the Ricci curvature scalar formed from the metric ~Yap and g, is the
background metric of a curved spacetime, coming from the combination of the string
graviton h,, and the Minkowski metric 7,,. The tachyon 7' and the dilaton ¢ are
fields for the lightest modes of the string. The only dimensionful parameter of the
theory is o/, which sets the scale at which stringy effects become important. To date,
the theory remains incomplete because it is not understood how spacetime emerges

from string theory or why spacetime itself is related to the excitations of the string



that describe gravitons. Despite this lacuna, there is evidence that the theory is
internally consistent with an identification between these two apparently unrelated
concepts.

Although I has conformal invariance to lowest order in ¢/, this symmetry will be
violated quantum-mechanically unless certain conditions hold. For the action (5),

these conditions are:

R, =V, V,6+V,TV,T+d(Ru.R )+ 0(?) (6)
OT + (V,$)(V*T) 42T = O(c) (7)
226 —d)+ o [R—(V¢)* —20 ¢ — (VT)2 = 2T% + O(a*) =0 . (8)

These conditions are the string replacements of the Einstein equations, into which
they degenerate in the limit o' — 0.

It is interesting to note that the stringy modifications in Eq. (6) have no definite
sign, and therefore there is no reason to believe that the timelike convergence condition
(1) is satisfied in string extensions of general relativity. Nonetheless, the conditions (6)
- (8) cannot be directly used to probe the existence of spacetime singularities. There
are two reasons for this. The first is a practical issue. If singularites are to be avoided,
it will be because the stringy corrections to the Einstein equations become large (since
the lowest-order equations do obey the timelike convergence condition). However, if
the first correction is large because the curvature is large on the string scale, all
higher-order terms are large too, and Eqs. (6)- (8) become prohibitively difficult to
solve beyond low orders. Second, since the treatment is inherently perturbative in
powers of o/, the starting point must be a spacetime that is itself singular. However,
no amount of perturbation will ever remove the singularity, and so any attempts to
resolve the issues based on these equations will necessarily be stymied.

Let us therefore attempt to find backgrounds that result from exactly conformally
invariant string theories. We mostly restrict our attention to spacetime dimension
d = 2 to simplify matters. The first background that we consider is the so-called linear
dilaton background [4]. The spacetime is just two-dimensional Minkowski spacetime

with T = 0 and ¢ = @o + Ar, where A\ = 4/v/o/. It satisfies Eqgs. (6)- (8) to lowest



order, and all higher-order corrections vanish by virtue of the fact that spacetime
is flat and that V,¢ is a Killing vector. It is satisfying to discover that Minkowski
spacetime is an acceptable background.

The second example is provided by a conformal field theory that emerges from the
GKO prescription [5] for the coset SU(1,1)_x/U(1). The exact spacetime background
corresponding to this theory is given by [6]

ds® = —dt*(coth® r — %)_1 + dr? (9)
and . _
b= do+1In sinh 2r (10)

(coth®r — 2/k)1/2
If one takes the limit £ — oo, then this spacetime obeys Egs. (6)- (8) with o' = 0 [7].
However, exact conformal invariance is achieved only for the case k = 9/4.

The spacetime given by Eqs. (9)-(10) is a black-hole spacetime. It is asymptotically
flat as r — oo, and there is a Killing horizon at » = 0. The metric (10) can be put

into ‘canonical’ Schwarzschild form by the coordinate transformation x = cosh 2r, so

that [8]

2___5”"1 2 1 2
ds* = x—xcdt +(:c-—1)(x+l)dx , (11)
where
2+ k
Te=o% - (12)

For k > 2, x. < —1. The coordinate singularity at » = 0 or £ = 1 is now of a standard
form and can be removed by the usual Kruskal construction. A calculation of the
curvature shows that R is finite except for ¢ = z.. However, this is not part of the
original spacetime r > 0, since to get to z. from £ > —1 would require travel through
a region of positive euclidean signature.

In fact, the entire region z > —1 has a geodesically complete maximal analytic
extension shown in Figure 1 [9]. The regions I are asymptotically flat regions with
z > 1, and the regions II are regions with —1 < z < 1 interior to the horizon. The
surface £ = —1 is just a coordinate singularity and is the surface of time-reflection

symmetry indicated by the dotted lines. Our conclusion therefore is that in string



Fig. 1. Penrose diagram for the extended metric (12) in the region = > —1.



theory, at least in this special case, black holes do not have any associated spacetime
singularity.

Note that the absence of a singularity here may help resolve the Hawking para-
dox [10]. This is the problem that quantum information such as phase structure is
lost whenever matter crosses a spacetime boundary at a singularity. If there are no
singularities in string theory, as is suggested by the above example, information will
be globally conserved. Any information that appears lost in one asymptotically flat
region reappears instead in another, which becomes a white-hole spacetime.

For the case d > 2, the possibility of performing conformal transformations with-
out affecting string physics can offer additional freedom in reinterpreting apparently
singular solutions. We can consider, for example, a class of Friedman-Robertson-

Walker universes with line element
ds® = —dt* + a*(t)(dz? + dzj + ... dz%_)) . (13)

The lowest-order solutions of this form to Egs. (6) -(8) are known [11], and we can

use them to examine our hypothesis. For definiteness, consider the solution
a(t) = aot'” |,  $(t) = ¢o + (1 —A) In(t/Ve!) . (14)

Here, A = (d—1)'/2, and ao and ¢y are arbitrary constants of integration. This space-
time is singular when a(t) — 0. The universe then has zero size, corresponding to the
big bang. However, string theory is invariant under spacetime conformal transforma-
tions that may well convert an apparently singular spacetime into a nonsingular one,
without changing the string physics. In the present example with d > 2, a conformal
rescaling of the metric by a factor e2*/**~1) converts the spacetime into a flat and
hence nonsingular one.

The results we have presented here suggest that string-metric singularities are
harmless, unlike apparently similar solutions of general relativity containing one or
more spacetime boundaries. If this is generically true, the issue of singularities in
general relativity is resolved by string theory.
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