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A NEW GRAVITY METER

SUMMARY

A new system for the measurement of gravity is described in
which g is compared with centripetal acceleration. An AC-null method
is employed so that the measurement becomes independent of the trans-
ducer characteristic. The value of g is finally measured by the deter-
mination of a frequency. The instrument should make it possible to
obtain repeatable measurements in a much shorter time than with pendu-
lum methods. Integration methods for the elimination of the effects

of periodic accelerations on a moving platform can easily be applied.
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A NEW GRAVITY METER

THE _NEW METHOD

For the absolute determination of gravity, methods employing Kater's
reversible pendulum are usually employed. Pendulum observations are

relatively slow, tedious and inaccurate, but do furnish gravity differ-

2. hence

ences in milligals. (1 gal is the acceleration 1 cm per sec
1g = 980 gal). Relative measurements are made with spring type gravity
meters. These instruments furnish rapid and easy to make readings with

sensitivities of .01 milligal, but the meters have to be calibrated

frequently against pendulum observations.

The change of gravity with height gives us a physical picture of the

required accuracy.
gy = g1 - %?)

g is the sea level value

h is the altitude in meters

R is the earth radius (6370 + 10%m)

for h = 3m, we obtain a reduction of g by about 1 milligal.
Hence, if we 1ift the gravity meter from the floor to the ceiling of a

room, the instrument should give a definite reading.

A new method for the determination of gravity will be described which
is rapid and easy to apply and still has a sensitivity of at least 1 mgal.
After the instrument has been calibrated'once. measurements are repeatable
without further calibration. It is hoped that future advances in the art
will make a sensitivity of .1 or even .0l mgal feasible. The method shouid
be applicable at sea and in airplénes because the output of the instrument
is obtained as an AC voltagé. the average of which can easily be obtained

by integration.



The acceleration due to gravity is continually compared with centri-
petal acceleration by means of an AC null method whereby a single trans-
ducer is exposed to equal pressure amplitudes from g and from the centri-
petal acceleration. In this way, the transducer characteristic is'render-

ed non-critical.

In figure 1, a long arm with length r; is shown, rotating around A
with angular velocity w; and carrying at its end a mass m1; Around its
end two short arms with length rp are rotating with wp and -wp relative
to the first arm, carrying masses my. A strain gage type transducer T -is
inserted in the long arm, generating a voltage proportional to the radial
stress existing in the arm. The axles through A and B are horizontal.
The rotations are produced by motors and maintainéd at constant angulér

velocities.

Let |wj| be equal to |w2|. This means that, while the long arm per-
forms one revolution, the short arms fevolve once around the long arm.
As shown in figure 2, the phase of the revolutions is adjusted in such a
way that, for the long arm'pointing vertically up, the two masses my are
together at their highest point. While the long arm points vertically

down, the two masses are again together and pointing upwards.

One can guess intuitively how the system works: For the long arm
pointing up, gravity compresses the transducer. For the arm pointing down,
gravity expands the transducer. The centrifugal force, however, works just
in the opposite direction. The long arm is lengthened by the short arms

in its up position and shortened in its down position so that the centri-



fugal force expands the transducer more in the up position than in the down
position. For a certain value of my and mo and for a certain w = W) = Wo
complete cancellation of the AC output occurs so that g can be determined

by measuring w.

The transducer togéther with a high gain.amplifier and detector are
used as a null indiéator. Only two elements have to be controlled with
high accuracy, namely w and ro. This will be explained later after the
equations of motion have been established and after an error analysis has
been performed.

ANALYSIS

The design as shown in figure 1 is just one special arrangement. In
order to keep the treatment as general as possible, it will be assumed
that w; # wyg. The problem is defined by the determination of the accelera-

tion of a particle P on a moving curve. This acceleration is the resultant

of: :
‘ a; - The acceleration of constraint
ag ~ The relative acceleration (found as if the curve were at rest)
ag - The Coriolis acceleration (Twice the product of the relative

velocity of the particle along the curve by the angular

velocity of the curve)

~

a; '~ The acceleration of constraint of any point P on a moving
curve is the resultant of:

a;; - The acceleration of point A around which the curve rotates

ajg rw2 from P to A, due to the rotation of AP about A.

)
a3 - rw? perpendicular to AP.



Assuming that only one mass My is rotating and further assuming that

1
i

w, and w, are uniform and that all elements are rigid (no bending of the

arms), we can determine the radial acceleration along ry: (the centripetal |
i
accelerations are assumed positive for directions towards A and.for t = O, %

the initial position of mp is at its highest point).

For mass m2:

a;; = 0

a9 = wlz(rl + x5 cos wot)
313=0

a; = w12(r1 + ro cos wat)
a2 = w22 r2 cos w2t

ag = 2w1 Wy C€OS wot

I 2
a, =wry+ (wy w2) ry Cos wot
For mass my
2
ay = aj = w°r; (ag = 0, ag = 0)
For two masses m, counter rotating, the Coriolis term ag disappears
because of mutual cancellation of the two accelerations. We obtain for

m2 and m2/:
ap = w12 Ty + (w12 + w22) T9 COS Wot.

It is interesting to show that,if radial acceleration is considered, the
function of two counter-rotating masses myp is equivalent to the function of
a single mass 2mo, swinging radially along the large arm with sinusoidal

motion as shown in figure 3.
$ = Ty COS Wot i 8= - wy Iy sin wot

§=- w22 r9 cos wot.



Because we assume the acceleration towards A as positive, the relative

acceleration of 2m is:

2

43 = wp“ T9 COS Wot.

Hence:
811:0

ayp = w12 (r1 + r, cos mzt)

aj3="0
32 = w22 T9-COS w2t
a3=0

a, = w12 r + (w12 + w22) Ty COS Wot

This is the same value we obtained before for two counter-rotating masses.

We are now ready to write the equation for the radial force in our

idealized (not- bending) system.

The sign for the forces directed outward from A are assumed to be

positive.
Fo.= 2m2[w12r1 + (w12 + w22) Iy €0S Wot] + my wlz r
-(m; + 2m2) g cos w;t = Fpe + Fo + Fg.

In figure 4, F, is plotted versus time. It consists of three parts:
Fo., a constant force, Fn at frequency ¥2 and F_ at frequency 21,
Fpg and F. only would exist if the axes were vertical. Fg is caused by
gravity. For clarity, it is assumed that wy < wy. The value of gravity
could now be determined if Fy is compared with Fg. In order to compare two

voltages with different frequencies, however, rectifiers are necessary. In

addition, the same transducer. sensitivity would be required for Wy and wy.



These drawbacks can be avoided by making Wy = wo SO that the transducer is
driven by two periodic forces with the same frequency and the same amplitudes
with opposite phases. A real null method can now be applied for the measure-

ment of gravity.

If w = ) and if only AC voltages with the frequency*%% are
derived from the transducer, we obtain: . |
E =K [4m w? rg - (m + 2m25 g] cos wt . (1
K is the voltage produced by the transducer per unit force.

For E = 0, we obtain:

4my o rp

A apd

r is measured in.cm and w in radians per sec.

We can now determine the requifed accuracy of the components for a non-
bending system. If g has to be measured with an accuracy of 1 part in 106.
mj, mp and ro have to be stable to 1 part in 105, w has to be controlled to
one part in 2'106 because %? =:2%% . It should be noted that the g-reading

is independent of r;. For a non-rigid system, it will be shown that r; has

to be controlled to 4 parts in 10,000.

For a g of 980 cm/secz, the equation supplies also the correct relation

between Wyr To, My and mg:

w? Yy = 245 my + 2mQ
M2

One set of constants could be chosen as follows:

w= 2T * 100 = 628 (w® = 394400)



Ty =1 cm

= 1608 ¢grams

3
[
|

1 gram

5
1

This choice has two drawbacks:
1) Ty is small so that the dimension of the bearing is a large part of

the arm. Hence, an accuracy of ro of one part in 106 is not easily obtainable.

2) The radial force exerted by the masses 2mo has a maximum value of:
Fé = 2m, w2 (ry + 2r2) dynes

For ry = 10 em, Fp = 9.5'106 dynes

Fo.=9.510% 1
m g

9720 gram force.

This load acts on the bearings of the small arm and makes it impossible -

to maintain ro with the required accuracy..

A reduction of the angular velocity to w = 2m-10 and an increase of ry
to ro = 10 cm seems to be a better choice. r; is increased to 30 cm.

2710 = 62.8 . (w2 = 3944)

I

w
ro = 10 cm
.ml = 159 gram

m, = 1 gram
394000 dynes

I}

For ry = 30 cm, Fo,

1]

F., = 403 gram force.
The ratio of r2 fo the bearing diameter has been increased by a factor of 10.
In addition, the load on the bearing is reduced. It is believed, that under

these conditions, the required accuracy can be maintained.



THE INSTRUMENT

Figure 7 shows a schematic design of the apparatus. The small masses
my and m2'are carried by two thin aluminum disks. For the control of
speed these disks support on their periphery a magnetic recording signature
of 100000 waves, Assuming a radius of 11 cm, the circumference of the disks
is 69 cm. The recorded wavelength is, therefore, .69 °* 10‘3 cm, a value
which is actually used in good recorders. The disks are driven by two
motors M and M'" with 10 revolutions per second. Two magnetic heads H and H'

are arranged on the long arm.

_ The speed control of the long arm is carried out the same way. A disk
D with magnetic recording on its rim is coupled to the arm. Magnetic head
K is employed to pick up the recorded wave. Hence, while both arms rotate
with 10 rps, the heads will deliver waves with a frequency of 1 Mc/sec.
Disk D carries an additional magnetic signature on its surface which produces
in the magnetic head.L a wave with a f:equency of 10 cps. The long arm

together with disk D are driven by motor N.

Figure 8 shows a block diagram of the servo-loops. Motors M and M’
are slaved to motor N by comparing the waves from K with the waves from H
and H' in the phase detectors P and P'. Whenever M or M' advance or retard
with respect to N, a positive or negative voltage is developed in P and P'.
These voltages are employed in the motor control devices MC and MC' to
produce exact speed and phase synchronism between N and M and M'. The

slaving operation could, of course, be performed mechanically. It is,



however, believed that an electronic system is more exact and has the

advantage that less weight has to be supported by the moving parts.

The 10-cycle wave derived from transducer T is used to control the
speed of motor N. Inspecting equation 1, it can be seen that the expression
for E consists of two parts: The centrifugal wave and the gravity wave.

For E = O, their amplitudes are identical and, if w is heasured, g can be
determined. If w is too high or too low, the phase of E will be either

0° or 180° compared with the phase of the gravity wave alone. This phase
refefence is delivered by transducer L. The amplified wave from T is
compared with the output from L in the phase-sensitive rectifier Q. If its
output is positive or negative, N is speeded up or slowed down by action of

motor control NC.

Finally, the 1 Mc wave from the magnetic head K is compared with the

output from a master clock CL in the mixer MI. The difference frequency

is measured in the counter CC. Because %?==2%? and assuming that the master

clock delivers 1 Mc and that this frequency corresponds to a certain g, a
deviation of g by 1 milligal will produce a beatnote of % cps. Observation
of this beatnote for a period of 10 seconds should be sufficient to determine

the exact value of the beat-frequency.

Actually, it will take longer to perform a measurement of g. The
output of T will contain a certain amount of noise due to an unavoidable
amount of bearing-roughness so that the bandwidth of amplifier A has to be.

restricted. The same effect can be achieved by introducing a low pass



filter after the phase-sensitive detector Q. Whichever method is used,
the time of response of the instrument will be increased. If the instrument
is used on a periodically accelerated platform, additional integration net-

works have to be applied after Q.

Variations of the torque that the motor N has to deliver are reduced by
extending the long arm to the other side and by the addition of 2 more
motors for the rotation of two additional small masses as explained

in the appendix. These motors are driven in phase synchronism with M and M'

Figure 9 shows the transducer mounfing.* It is very important that
the transducer shouldxrespond only to radial forces. It should be as
insensitive as possible fo any lateral stress of the arm. The long arm
consists of parts 1 and 2. They‘are connected by means of thin flexible
membranes 3, permitting free radial‘but impeding lateral motions. The
transducer is connected between part 1 and 2' which is connected to part 2
by a flexible part 4. Part 2' can again be subdivided into parts 2", 2"
etc. This way, a "filter" is formed, eliminating any undesired bending of

the transducer by a tilting action of part 2.

The alignment of the instrument, i.e., any deviation from the horizontal
is not critical. Let us assume that the instrument is tilted about the axis
of the large arm by an angle . The centrifugal wave will now be phase

shifted by o with respect to the gravity wave. A phasor diagram is shown in

*Suggested by Mr. B. M. Horton.
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figure 10. It is assumed that for correct alignment
P =K 4my w? rp = K(m; + 2my)g. (See equation 1). After the two waves
have been compared in the phase sensitive rectifier Q, an error voltage
. 2
AE will be produced which is proportional to P(1 - cos o) = P - %T .
For an accuracy of 1 part in 106. AE has to be kept smaller than P ° 1076,

Hence: 2
P %f <P - 10'6 and o < VE . 10'3 radians.

This means that o has to be smaller than 25 arc seconds, an adjustment

which can eaéily be performed by conventional means.

11



APPENDIX

THE BENDING OF THE LARGE ARM

Because the new method is based on the comparison of two AC-voltages,
their waveforms should be as free from distortion as possible. This is
indeed the case if all elements of the apparatus are rigid. In a practical
machine, however, bending of the arms will occur, causing phase-modulation
of the angular velocity. Again, in order to keep the equations as general

as possible, it will be assumed that wy and Wy are not equal.

The moment of inertia I of the total system changes periodically with

3)_2_

5 because of the_fotation of the small arms. The angular

frequency
momentum teﬁds to remain constant so that wy will be modulated with frequency
;% . If the motor would drive the long arm through a heavy flywheel and if
the shaft between flywheel and arm were not flexible, the arm would be

driven with essentially uniform velocity.

Now, the flywheel and the unflexible shaft can be replaced by an arrange-
ment. as shown in figure 5. By extending the long arm to the other side of
the main bearing and by rotating two additional masses as shown, the angular

momentum will remain constant.

For 2 small masses as shown in figure 1:

—— — - ;". z .
(51 Y AR A (% F ;3 *2/%/&.4\9:"4\!»‘5)
For 4 small masses as shown in figure 5:
(W"U‘/Wz = by 2ty (4,240,042, As L0 T b P, 2/:,/524&7@’;;‘)

- po
(f‘)r[)tmwz, = Wy Yy (42 4047),

It can be seen that the angular momentum is constant.
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Even if the long arm is driven with uniform velocity, the end of
the long arm would bend back and forth at %% . It will be shown, however,

that the effect on the accuracy is so small that it can be neglected.

An iterative process will be used for the computation:
Step 1: The long arm is driven with w;.
Due to the wo rotation of the small arms, tangential forces acting on
point B are produced, bending the long arm periodically with an angle
excursion v and causing a new angular velocity w(t) of point B. This
w(t) is a sinusoidally phase-modulated wave.
Step 2: Point B rotates with w and not w;. The tangential forces acting
on B are recalculated and lead to a new time varying bending angle. The
phase excursions are modified and a new w' of poiht B is determined. This
w'(t) is now a non-sinusoidally phase-modulated wave.
Step 3: Point B rotates with w' and not w. The process could be continued
indefinitely, but it will be shown that, because of the smallness of the

perturbations, the process can be terminated after step 2.

The only tangential acceleration to be considered in step 1 is the
Coriolis term (ag). In step 2, the acceleration term (a;3) has to be added.
1) ‘atl = -2w) wg o sin wyt
The acceleration is assumed to be positive in clpckwise direction.

The force acting on the long arm is:
Ftl = +2mg * 2w; wy ro sin wot
Ftl can also be computed by deriving the torque which is the time derivative

of the angular momentunlu41} The torque acting on the system is:

13



77‘—’&7%,,{ L = d,{M Dy (4,2 r2,° 20, 4, 2 2, £),

/77—""{‘4/1/1 A/N,f,/ywhif

Hence, the tangential force acting on B is:

6;- =}g= Frr, &, i Ey D oy To
For: ms = 1 gram, w= w; = Wy = 27 « 10 and
ry = 10 cm
Eﬁ MaX = 158000 dynes = 160 gram force.

Assuming that this force acts on a beam with a length 1 = 20 cm (2/3 or ry),
the bending angle vy can be computed. A beam with rectangular cross-section
(a = b =3) is assumed although a tubular design with similar stiffness

will probably be chosen for a practical design. The deflection

2 e
AL = _éi _——7f2—»——— /g; = B 4/0 Lo

£E a3 ’
E is Young's modulus (2-10° Kg/cm2 for steel)

v = % = 1.5°10"% radians.

Actually, the bending angle will be smaller because the constant centrifuéal
force increases the effective stiffness of the beam. A value of v = 107 5
however, will be assumed for further computations in order to accommodate any
additional bending which may be caused by the transducer mounting. Hence,

the long arm is periodically bent back and forth with a maximum angle

Y = 10~° radians.

P = wit + v sin wot
w = %% = wy +wg y cos woyt

w = -w22 y sin wot

14



2) In the second step, the accelerations not only of mo but also of my

have to be considered.

For m2 :
Fes, ‘ . o e, L e, 2y forrd,
a, F= - 2wu A, rrmnpd, T p ) L Z -~ £
z 2 > L
2 - il
2 2
o Ayt TR 2,2, L, :
7ﬁ;r* S, P, > = 2 = 2 s, Lootty
7

&/Z‘z = Lo, 2, ?’;:wf{z Pl s 9:)(/!/ A 499?‘/2/"{)~

2o, . 2 -
6,7 w2000, D, T = 2 et pran ), T 020l T

2 . —— 2 . < .
— [ty iy T T2 8T py i, T o0, T

a.’* ity = 10y ol o0,
t, = TR A A, drin ] — Wy el s,
, > ‘
., = Zawt, b, T
o >
For m,: 2
1 g 2 .
éﬁ?z = — oy ey L
22 11t
’ z ’
62 = /f’rf’ 4/7‘1 -

The total tangential force is:

e e?74 . 4 .
2 ’
/5; = /5; # /3; = 44%421a4Ahg,4224>Vyu&%?Zf-+(€2@«9 *4%19)445J471512nu4932f
) 2 . .
F Gon, “ fota 0;1»2':4/2 z.
Compared with Ftl (the first term in above éxpression). the two last terms

are reduced by y = 10°5 and can be neglected. The iterative process can be

terminated after the second step.
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A continuation would follow these lines:

P9

I

etc.

w' = =w; + K 2
dt 1 T

THE TORQUE EXERTED ON THE SMALL ARMS

The torque exerted on each short arm is caused by accelerations of
mo, perpendicular to rg. The only term to be considered is a9y the
acceleration of m, due to its rotation around A. There is no perpendicular

component of the terms ap and ag.

Figure 6 shows the vector diagram.

@, = 28 .

w__é....._..._ - ‘/‘z/’ - A
Ao, & )iy e )T -

' z
= A Pre Ay
4 ! A fedy - )T

ﬁ//g = éé«,z_%/w&""/,)a = //u;‘z/:/,f’)f'/;’walaf‘

= - = 2 . “&

For my = 1 gram, wj = 27 * 10 and r; = 10 cm.

m

Fp X = 39500 dynes = 40.35 gram force.

It

The torque T = Fp * rg = 405 gram cm.
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This value is so low that the bending angle of the small arm can be

neglected. Still, the torque has to be considered for the design of
the motor, driving the two small arms so that excessive periodic phase

excursions can be avoided. Second order effects caused by w, are so small

that they do not have to be considered.

THE EFFECT OF BENDING OF THE LARGE ARM ON THE RADIAL CENTRIFUGAL FORCES

It was shown before that, because of the Coriolis acceleration, the

angular velocity of B is not uniform. Hence, in order to compute the

radial forces with gredter accuracy, w, has to be replaced by w(t).
W= Wy towgy y.goé'wzt.
The analysis of the stiff system has led to the equations:

For masses my: ‘

el = 2 2
Ayt =2, p (0P ) by thotd E

For mass mj:
A‘MI 2
A / /
Replacing w; by w we obtain:

, For masses my:

5% Gm

(56/" = ﬁl/w/zf‘/"lzzd’jf)??‘}) Z" e Zﬂv} &'4/%{"4'»&':‘3 tft);g) o+

z, 2,2, 2
Pl (L P L0, ’f%?w,wgay/&b% €) 262 b, T+
+ o, M?/?'Wywa Z . |

4 . A I > }n/ > H :’/‘(9.,’ o
Lecoverie D od =g ﬁi?}i—"’ LS o4 W‘%ﬁé )
= ey 2, g
L= ) = LE= e . Dioeed
e (72

2 e

L = 2 4 2 2 '
“e /176(4), + ;:«A{>1§“ + E%[ae;%u?2¢ﬁpg?ﬁggz&.4'£?4L;£4/2.d"lmé,1ﬁ‘ -+
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2 o, L
/4;[4/, ooty Tt f Lfmqu 7‘+-—A/ 0{/(4‘74\); +

+ev, e &t/ Ny w,g»—me 7‘) o+
+/&2NJ, ,/4"‘7,,‘}2;/ .
The DC term:

. : / 5 A
/ N <~ = £ K7 ’) - A
L, &/ +~. = % “ﬁa@" ¥ .A“V;,5VE>{f"‘.
The term at the fundamental frequency:
Py /’51"19 PP S ) ._3,. > & o
£ 8 Jom A4y )+ TR gl PR ol
At the second harmonic: ‘ ' '
) 2 2
5421}244227 (,jzfzﬁq!“%;Jf’ + A, &, &vQ,Jx:)
At the third harmonic:

‘//19934,)2‘{(@ L, "Edwz) :

For mass mlg

iy

2 2 2 .
//,- = /2'(4,/,{; N,_(}/‘Cbé)zjff'«QM 5‘/2{-“}9 ‘4‘/2?5{)
2z¢ ' & oz 2
., =4, (1t “ ELAJVOW + % w,.;}v %sz*f +
+ 2/"/ /"/) d"‘m 2{)

. 2
The DC term: /&/1‘/124_ 2/'/% %2(}/‘ :

At fundamental frequency:

//(99 &, ZQA bt o, (a/

At the second harmonic:

s AR
@24)2{“{2/,1, v, d,« )
Neglecting all terms containing yz. we finally obtain the radial forces:

(radial forces are assumed to be positive in outward direction).
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B (o2 20021 4,7 2y -
/-::,2 = 200, [..7/&.«2 /{a;/wff.wz"") + [ Zoose, + 5’«@) A, o] 0y J/J

and F2 are rejected by frequency selective means.

FDC
W

Lortomrgmes, 2 £ b00 oeer. 4 y

/ /. 2% n, A Amjtz+2k}ﬂ&m}ﬁ%%»%ék.
For m, = 159 gram, my = 1 gram, ry = 30 cm, rp = 10 cm and y = 10"5. thé
second part of this excursioh is 400 times smaller than the first part.
Hence, for a required accuracy of 1 pait in 106. the second part has to
be kept stable with an accuracy of 400 parts in 10 or 4 parts in 104.
This means that if the bending of the large arm is considered, rj and vy

have to be kept within four parts in 10000.

THE EFFECT OF BENDING OF THE LARGE ARM ON THE RADIAL GRAVITY FORCE

It has been shown that, for the rigid system, the gravity force is:
Fo = (my + 2mp) g cos wyt.
%? é; LD L) F f«f\

It was also shown that, for the system with the bending arm:
o= e, ;—w‘i{(}cgf)w .

b= [t = s oin

c?

ﬂ? = ? HD/ uF + T 2, Z") ~
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ﬁ£265£¢#2£ N ccﬁ)[@kaQQJ = LEool CF }/ o Gzyvxal<?>vﬁ/<£
62? ::‘j'lzﬁ?ﬁéﬁ,f ;;;zg;w;wxa»é{>z:>-—-/794A~h5?‘/74AV~63‘°9¢;fbl@g:f%g].

LED Yty ) = L 4 2L, () o2t 4 2T,42 182§yt .
(e, ) = Ziqugwﬁiﬁl%éa&pz%ﬁi

(Jy (y) is the Bessel function of the first kind of the nth order. v is

- s -

the argument of the Bessel function in question.)
ZJ/xf’) 2,7 ZJ/(‘)/«:NW?‘&&?QNM -

L
{'fw/rf/«c S Lodd ,;,fc;)/l = A,Z 282/ -;/ "’1'5’:7[»( f/)

e W/L = 4;»—;;// /] — aﬁ—;[ou/@)]
= #[Tole) cron? ~Jf<”dw) 2026tk YT+ ], 183 oo fo0, 424 JE
tJ, ﬁ*) LO2Y 1~ 28, )T + ] () E3 o, +2u, ¥
=Ja () 2930, ~300, ) # T, () L o 45,3
For a small argument, the following approximations can be made: |
Tlgd= 1= &
37(@%) - -if P T

‘».

Only the fundamental AC component of the transducer voltage is utilized.

The bending of the arm produces a reduction of this voltage by the factor

Joly).

20



2 "p-10
For a y of 10'5, this reduction is %r = lQZ__ and represents an error

in the reading of gravity of 2.5 parts in 10!l.

Hence, the bending of the long arm will practically not modify the
transducer output. As shown before, this output consists of a wave with

a frequency of 10 cps. (w = W, = W)
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