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ABSTRACT

The Kostant-Souriau method of geometric quantization is applied
to homogeneous and isotropic cosmological models with positive intrinsic
‘curvature and a massless Klein-Gordon scalar field. 'These models are
studied because classically they collapse to a singularity. It is
rigorpusly shown that the quantized models collapse as well (sobthat
there is no "quantum bounce'"). This work demonstrates the practical

usefulness of geometric quantization for the study of physical systems.
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Can quantum effects prevent the "Big Crunch"? Even before it was recog-
nized that the gravitationally induced collapse of the universe is a character-
istic feature of classical general relativistic ;::osmology,1 this question
spurred major efforts to make space-time gravitational physics compatible with
the quantum principle.? While interesting results regarding "quantum bounce"
have been obtained semiclassically,3 ultimately one would like to base oneis
answer to this question on a complete and consistent quantum treatment of the
gravitational field and its interactions. Such a theory is not yet available.
However, we have recently made some progress toward this goal, using the geo-
metric Kostant-Souriau quantization procedure.“ In this essay, we briefly
describe the application of geometric quantization to a simple model cosmo-
logy, which we rigorously show does exhibit quantum (as well as classical)
collapse, and we discuss why geometric quantization promises to be a power-—
ful tool in quantum gravity.

Geometric quantization is a well-defined procedure for obtaining a Hil-
bert space of states and a set of quantum observables for a given physical
system all in terms of the underlying symplectic geometry of classical physics.
For the purposes of this essay, it is not necessary to dwellrupon the technical

aspects of the Kostant-Souriau procedure.5

Just to give the flavor of it, how-
ever, we note that geometric quantization involves three major elements:

(1) 'prequantization'", which yields a preliminary Hilbert space and a complete
but reducible representation of the classical observables; (2) "polarization",
which (locally) defines a complete commuting set of observables and thereby re-
duces the prequantization representation; and (3) the introduction of a "meta-
plectic structure", which provides the measure in terms of which the quantum
Hilbert space inner product is defined.

Geometric quantization is essentially a rigorous global generalization of

the canonical quantization technique. As such, it is not a conceptually new
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approach to quantum mechanics: it does not alter the way in which quantum dyna-
mics is analyzed (via the Schrodinger equation) or the way in which measurements
are theoretically made.

One can best appreciate geometric quantization by comparing it to the stan-
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dard canonical quantization procedure. The latter, we recall, is successful in

treating systems which satisfy two conditions: (A) the classical phasespace P

is the cotangent bundle of a Euclidean co;figuration space (C; and (B) the observ-
ables to be quantized are essentially no mofe complicated than p2 + V(&). If
either of these two conditions is violated éanonical quantization encounters
severe diffiéulties. Specifically, it provides no way to define the quantum
Hilbert space if P # T*C or if (¢ is not Euclidean, and if complicated observables
are quantized, then factor-ordering problems (and sometimes outright inconsisten-
cies?) arise.

Since geometric quantization is designed to take into account the topolo-
gical and geometrical structure of the classical phasespace, the latter no longer
need be Euclidean. Actually, geometric quantization can be applied to any phy-
sicél system as long as i&s»phase space is a symplectic manifold (a configura-
tion space need not exist).8 Furthermore,.there are no factor-ordering ambi-
guities in geometric quantization. Last, but not least, geoﬁetric quantization
has proved to be an effective computational tool. TIndeed, previous applicationsl+
have found it capable of quantizing systems which are otherwise intractable.

Is geometric quantization needed for quantizing the gravitational field?

The difficulties in gravity theory are primarily due to the presence of the
superhamiltonian # and supermomentum Hm constraints which reflect the diffeo-
morphism gauge freedom ('coordinate choice" freedom) of the theory. If one

solves the constraints and fixes the coordinates before quantizing ("ADM" ap-

proach), then generally there is no configuration space and the ADM Hamiltonian

,,//

is a rather complicated function to quantize. If instead one leaves the coordi-



nates free and treats the constraints as quantum observables (''Dirac approach'),
then the gauge freedom must be eliminated from the phasespace (leaving a
structure--"superphasespace'--which is not a manifold) and one still has com-
plicated functions--namely H and Hm——to quantize.®

It is only when one looks at the simplest of models--those with a consi-
derable amount of symmetry built in before quantizing (''minisuperspaces')--
that one has a well-defined Euclidean configurétion space (and, even in these
simple models, devastating factor-ordering ambiguities appearlo). Thus, unless
symmetries are imposed which make the constraints vacuous, the classical de-
scription of'gravity satisfies neither condition (A) nor (B). So one should
not be surprised to encounter difficulties in applying canonical quantization
to gravity; a more complete and consistent theory (e.g., geometric quantization)
is needed.

Whether or not geometric quantization can be profitably applied to quantum
gravity in all generality is not yet clear. We have, however, begun to apply
this method successfully to simple systems. The one we focus on here is the
positive curvature Robertson-Walker cosmology with Einstein gravitation and a
massless Klein-Gordon scaiar_field. The reason for studying this "RW¢" model
is three-~fold: First, such models are well-understood classically, they are
roughly compatible with observational cosmology, and they exhibit classical col-
lapse. Second, this RW¢ model has been canonically quantized (although with
inconclusive results)!!, Finally, the mathematics—--albeit fearsome-—-is doable.

Since the starting point of the Kostant-Souriau analysis is a classical
description of the system in terms of symplectic geometry, let us give that now
for our RW$ model. The KW¢ spacetimes are homogeneous and isotropic and so are
described completely by the '"radius" R(t), the scalar field ¢(£) and the (aux-
iliary) lapse function N(t). The phase space is T*ﬁ?f with coordinates

e

{ﬁg¢,nﬁpw¢; R > 0}, the symplectic form is



w = dn, AdR+dn A dg

b

and the Hamiltonian is

~J

H = -NH = —N{——~'ﬂ -— 1 + 6R} .

Since #{ is the superhamiltonian, it is constrained to vanish. There are no
other constraints.l?

We must now choose between the ADM and Dirac approaches. We take the ADM
approach, since it is better understood formally (especially in light of cer-
tain problems with the Dirac scheme recently noted by Komar and Bergmann13)
and since the calculations are simpler. We reduce our RW¢ system by choosing

the gauge ¢t = ¢ (thereby fixing N = —R3/ﬂ¢) and solving H = 0 for = We se-

6"
lect this particular reduction since (i) ¢-time covers the entire classical
evolution of the model, and (ii) with ¢-time, we may quantize the radius R

and monitor the asymptotic temporal behavior of its exﬁectation value as a test
for collapse. The unconstrained phase space resulting from this reduction is
the half-plane JRE; the symplectic form is now

w.=dn, AdR = (#/12)dr A d6 ,

and the ADM Hamiltonian takes the form

1 - 2 r? .
H=R/—= 5 + 12R< = sin 6
12 'R 24Y3

(here, we have introduced polar coordinates

r =y ﬂ% + 144R2 ) ='}T In £

on le).
+

Before proceeding with the quantization, we note that the model classically

evolves according to
. ,,/
R($) = T 550% eN
l:cosh[,/5 )]
so that a "Big Bang" occurs at ¢ = -», maximum expansion at ¢ = ¢, and a "Big

Crunch" at ¢ = + =,



Now, depending upon the topology of the classical phase space, there may
be alternate choices of the three geometric quantization structures discussed
earlier. For the REW¢ system, however, the prequantization and metaplectic
structures are unique, and there is a natural choice of polarization. The
Kostant-Souriau analysis then leads to a quantum state space which is iso-
morphic to L2(0,ﬂ).

The polarization is chosen so that both A énd R? are quantizable; the cor-
responding self-adjoint operators on Lg(O,ﬂ) are

-ih

U=35

[2 sin 6-5% + cos 6)

and

QrR? = :%h sin S{Sin e-é% + cos 6)

respectively. The spectrum of QH is (-=,+x). Solving the time-dependent
Schrodinger equation, we obtain the evolution ;E
1

Feo %‘(t-to) L 6 4v3h
V() = J {g(E)e sin ‘6[tan 51 }

-0

dE ,

where g(E) is a Fourier amplitude. Note that we have imposed no boundary con-
ditions.

We now examine the quantum dynamics of the AW system for evidence of a
Big Crunch. We do so by studying the asymptotic (t > @) behavior of the ex-
pectation value of QBZ(t) for a general square integrable wave packet. QBz(t)
is obtained by solving the Heisenberg equation for this operator, and then a

careful study of the matrix elements of this operator shows that
lim <QR?(¢)> =0 . (2)
trw

In fact, we find that the rate of quantum collapse matches the classical rate
/
(1) exactly.
Is this truly a Big Crunch? One might contend that we have merely shown

that as ¢ classically grows very large, <QR?(4$)> goes to zero. Why should the



quantum state Y(¢) evolve to ¢ = »? We argue as follows: recall that the quan¥
tum Hamiltonian QF is self-adjoint. It follows that probability is conserved,
i.e., the norm of any state y(¢) is independent of ¢. Therefore, there is no
"leakage" of the states as ¢ » », and so our quantum EW¢$ model necessarily
evolves to the ¢ = o limit. Consequently, (2) implies that all physically well-
defined states of this ERW$ model eventually collapse.

As noted earlier, these positive curvaturevRW¢ models have been studied by
Blyth and Isham using canonical quantization, but their results were not definitive.
Similar systems were canonically quantized by DeWitt?2 and by Misner.l!* Their
conclusions underscore the ambiguities which canonical quantization leads to,
since Misner obtains a Big Crunch using one choice of factor ordering while
DeWitt avoids it using another choice. Our results, based upon geometric quan-
tization, are unambiguous in this regard.

Our analysié supports the contention that, at least in some (highly sym-
metric) spacetime models, quantum effects do not prevent the "Big Crunch".
0f course, much work needs to be done before a concensus can even begin to
emerge regarding quantum éollapse. Furfhermore, there are many theoretical
issues that must be elucidéted, such as the effects of different choices of time
and polarization upon quantization. Finally, there are deep and largely unre-—
solved questions regarding the physical interpretation of the quantum dynamics

of these cosmological models in particular”’lq

and quantum gravity in general.
Our RW¢ model calculation indicates that geometric quantization should

prove to be an important tool in quantum gravity since it can be applied to the

nontrivial phase spaces and observables which appear in general relativistic

field theories. We hope that this work will lead to an appreciation of the

practical aspects of geometric quantization.
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