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Abstract

The existence of black holes in general relativity provides
an effective cut-off to the negative gravitational potential. This
results in a fundamental upper 1imit on the amount of energy that

can be radiated away by any isolated system.
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Is it possible to extract an infinite amount of energy from a finite
system? Can there exist objects that have a total mass which is negative?
Such objects would generate a gravitational repulsion rather than an attrac-
tion. It is perhaps rather surprising that these questions have been ans-
wered only quite recently. To understand why the answers to these questions
are not "obvious", we begin by considering the Newtonian theory of gravita-
tion.

In Newtonian theory, one can obtain unlimited amounts of energy from
an isolated system. Consider, for example, a system consisting of two
small masses in orbit around each other. Since the system is gravitationally
bound, the total energy is negative. Since the Newtonian potential is
unbounded below, we can make the total energy as Tlarge and negative as we
wish by making the orbit smaller and smaller. In Newtonian gravity, we can
even construct point masses, so the entire system could in principle be made
arbitrarily small, leading to an infinitely negative energy.

There is, of course, something rather wrong with this picture. The
laws of thermodynamics rule out the possibility of extracting infinite
amounts of energy from finite systems. Moreover, if we start to include the
effects of special relativity, the matter gets rather worse. If we just
naively add in the rest mass energy of the two small masses, it seems that
the total relativistic energy of such a system could be negative. Special
relativity tells us that energy is equivalent to inertial mass, and the
Principle of Equivalence in turn tells us that inertial and gravitational
mass are identical. Thus, if such systems existed we would have gravitational

repulsion or "anti-gravity". However, such an isolated system would have a
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total energy seen by a distant observer of E = E0(1—v2)'%with E, <0,
where v is the system's velocity relative to the observer. (We use units
in which G = ¢ = 1 throughout.) Physical systems in equilibrium will tend
to evolve to their lowest energy state, so our hypothetical system will
spontaneously accelerate to the speed of light.

Einstein's General Theory of Relativity is supposed to cure the incon-
sistency between Newtonian theory and special relativity. Indeed, here the
situation looks more hopeful since it seems that if we make our two body
system sufficiently small, we will create a black hole which should act so
as to 1limit the amount of energy which can be extracted, and hence ensure
that negative energy systems do not exist. The purpose of this essay is to
show that this is indeed the case.

One can define the total energy of an isolated self-gravitating
system which includes contributions from both the gravitational field and
matter fields. This total energy is measured at spacelike infinity and is
referred to as the Arnowitt-Deser-Misner Energy1, EADM . .One can also
define the energy in an isolated system "left over" after radiation has been
emitted. This energy is measured at (future) null infinity and is called
the Bondi energy EB 2 . Unlike EADM , the Bondi energy is a function of
retarded time u . Of course, the energy radiated away between u = -« and
u = up is the difference EADM "EB(“o) . It was shown twenty years ago
that EB(u) is in fact a decreasing function of u . That is, radiation always
carries away positive energy. The question we wish to consider is whether
EB(u) 2 0 for all u . If not, then EB can presumably decrease indefinitely
and an infinite amount of energy may be lost from the system.

The question of whether there exist systems with negative total eneray.
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in general relativity would appear to be very difficult to answer. The
total energy of a system is defined by the asymptotic behavior of its
Qravitationa] field. This field is related to the matter sources in an
extremely complicated way via Einstein's equations.

Preliminary results on the positivity of energy were obtained by
considering simplifying assumptions, for example weak fields or special
symmetries3. The first complete proof that EADM > 0 was given by Schoen
and Yau in 19794. Their proof was very geometrical and involved extremal
surfaces. About a year later, an alternative proof of this result was
given by Wittens.

In this proof, one solves a linear elliptic differential equation
for a spinor field on a complete spacelike hypersurface £ which stretches
out to spacelike infinity. One can show that the ADM mass can be expressed
in terms of an integral involving this spinor field on 5z which is at space-
like infinity. One then converts this into an integral over £ of a quantity
which is positive definite, provided that the energy momentum tensor of A
matter is positive (that is, obeys the dominant energy conditionG). This
shows that EADM 20 . When first7i;esented, this proof seemed somewhat
miraculous. However, recent work has led to a better understanding of the
result, and also to a generalization which shows that EB > 0, even in the
presence of black ho]esg. It is now possible to present the argument in a
logically motivated fashion. (These results have also been proved by Schoen
and Yau using their techniques]O.)

The Bondi 4-momentum Pg of an isolated system may be conveniently
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defined by a generalization of the Komar integral for the conserved quantity
associated with a physical symmetry. Let K? be a conserved null vector
field whose restriction to future null infinity ﬁa is an asymptotic transla-
tion. Then Ean is defined to be the integral of %;_Eabcd V[aKb] over an
asymptotic two-sphere S near null infinity. If we convert this to a volume
integral over a complete spacelike hypersurface r whose boundary is S , the
integrand contains two derivatives and the K . Since we want the integrand
to be positive, we would 1like to express it in the form (va)2 for some o .
Thus o must be the "square root" of K i.e. o must be spinorial.

Let K2 = aA E'A' where aA is a two component spinor. With no restric-
tions on aA (other than aA > ;A constant) the volume integral becomes

%a,B _ 1
K Pa

- 1 m_ m__ 2 _ 22—
87 J {va(VmK ) RamK apiViop = apViap.

z
-2, ap) (V75 )3z (1)

Since we have an inequality on Gab—- via Einstein's equation and the dominant
energy condition -- and not Rab , we wish to choose aA such that VzaA =
- %—RaA . Furthermore since the first term on the right has no definite sign
we would like vaKa = 0 . The simplest way to achieve these two conditions

A

is to require that aA satisfies the Weyl neutrino equation: Vapr e = 0.

Equation (1) then becomes

%anB _ b 1 m—
K'P_ = J {TabK - ——-VmuAV “A'} dz

AA'
a 4 (2)
z

The integrand is not yet positive because the second term can have either

sign. However there is still some freedom left in the choice of aA . We



-6-
now choose aA such that %mvmaA = 0 on © where t% is a future directed time-
Tike vector which asymptotically approaches a time translation. (This is
essentially a choice of initial data for the Weyl equation. One can show
that there exist initial data which satisfy this condition and asymptotic-
ally approach a constant.) With this condition on aA , the second term
in equation (2) cannot be negative.

This proves that Pg is a future-directed timelike or null vector.

(8,11) B

Using similar arguments one can show that Pa is in fact strictly

timelike unless the spacetime is flat in a neighbourhood of £ in which case

PB = 0 . This proof can be extended to deal with the case where black

a
holes are present. By setting a boundary condition on the outermost trapped
surface, one can show that the total mass must still be positive. It is
tempting to try and give a physical interpretation to each of the terms in
equation (2). On the left we have the "total energy remaining in the system".
The first term on the right is clearly the contribution to this energy from
the matter fields, and therefore the second term must be the contribution
from the gravitational field. However, one cannot regard VmaAvaA. as a
measure of the gravitational energy density because it is not a local func-
tion of the geometry. The equation that the initial data must satisfy on I
is an elliptic equation and hence a small change in the geometry near one
point affects the solution everywhere.

Thus, the gravitational energy cannot become negative, and there is
a fundamental upper limit on the amount of energy that can be extracted
from a given physical system.

The key to these proofs is the observation that one can essentially
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replace Einstein's equations by a linear equation. This is truly a remark-
able fact, and one whose implications have not yet been fully understood.
Why is there such a simple relationship in general relativity? There are
indications that this question is related to the question of why general
relativity admits a supersymmetric extension, supergravity. Do there exist
linear equations capturing other aspects of Einstein's equation?  Perhaps
the ideas discussed here will lead to further relations between asymptotic
and local quantities, for example,angular momentum or higher multipole

moments.
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