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Abstract

We point out that spacetime singularities play a useful role in gravitational theories by
eliminating unphysical solutions. In particular, we argue that any modification of general
relativity which is completely nonsingular cannot have a stable ground state. This argu-

ment applies both to classical extensions of general relativity, and to candidate quantum

. theories of gravity.

1 Internet: gary@cosmic.physics.ucsb.edu
2 Internet: rcem@hep.physics.mcgill.ca



General relativity provides an accurate description of a wide range of gravitational
phenomena. However it is not a complete theory of gravity since it exhibits spacetime
singularities. This would not be a serious limitation if singularities were rare, but the
theorems of Hawking and Penrose [1] show that they are ubiquitous, arising in large classes
of solutions to Einstein’s equations. More precisely, these theorems state that under rather
generic conditions, solutions will be geodesically incomplete. In many explicit examples,
e.g., gravitational collapse to form a black hole, the incompleteness occurs when geodesics
terminate in a region of diverging curvature. Yet while general relativity reaches an end,
physics must continue. Thus the description provided by general relativity breaks down in
a domain where the curvature is large, and a proper understanding of such regions requires
new laws of physics.

In a domain of Planck scale curvatures, the character of gravity will change radically
since its quantum nature will become manifest. The true physics of curvature singularities
may only be revealed in the fully quantized theory. The widespread expectation® is that
singularities will be “smoothed out” or “resolved” in this theory.

Alternatively, the physics required to understand curvature singularities may arise
at a classical level. Quite possibly, our classical description of gravity must be modified
before quantization. For example, classical string theory modifies the equations of motion
from those of general relativity [2]. Typically these modifications can be understood in the
context of a generally covariant extension of the Einstein action with new higher curvature

interactions

R
S = /d4$ V=9 [m + F(9uvs Vs Ruvpo) (1)

2

where F' is an arbitrary scalar function of the metric, the curvature and its derivatives.” In

1A notable exception is Roger Penrose, who has argued that since the early universe was very
special, the Big Bang singularity must remain in some form in the ultimate theory.

2 We assume the cosmological constant vanishes, although the following argument should ex-

tend to nonzero A (as well as higher dimensions and/or the inclusion of matter fields).
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the modified equations of motion, the effect of these new terms will be negligible for modest
gravitational fields, so these theories are still consistent with all of the usual experimental
tests. In regions of large curvature, though, these terms can greatly affect the nature
of the solutions. In particular, the contributions from the higher curvature interactions
spoil certain local energy conditions required to prove the singularity' theorems. Hence
such theories evade these theorems, and one might hope to construct a singularity-free

extension of general relativity [3].

In this essay, we argue that on physical grounds any reasonable theory will not “re-
solve” certain classes of timelike singularities. The elimination of these singularities would
lead to a theory without a stable ground state. Thus some form of singularity is required
for the theory to be well-behaved. This argument applies to the full quantum theory of

gravity as well as classical extensions of general relativity, with which our discussion begins.

Since we want (1) to reduce to general relativity for long distances and weak curva-
tures, the first term (with the fewest derivatives) is the scalar curvature. Now consider the
negative mass Schwarzschild metric. Asymptotically, the curvature is small, so the higher
order terms in the equation of motion are negligible and this metric provides an approxi-
mate solution for (1). What happens as we extend the solution in toward r = 0?7 Since the
field equations differ significantly from general relativity in regions of large curvature, it
is certainly possible that the metric remains completely nonsingular. However, the theory
would then have a regular negative energy solution, and so Minkowski spacetime would not
be stable. In fact, if we want the theory to have any stable lowest energy solution, it must
have singularities in order that one may discard what would otherwise be pathological so-
lutions. Even if the theory claims to have a ground state with £ < 0, we can always start
with the Schwarzschild metric with M < E and argue that it must be singular. This does
not contradict the positive energy theorem because the higher curvature terms violate the
local energy condition required by this theorem. Thus one has no guarantee that a ground

state exists. In fact we see that removing all singularities yields states with arbitrarily
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negative energy.

This simple observation is a powerful constraint on attempts to construct a singularity-
free extension of general relativity. Notice that it is not necessary to define a singularity in
terms of geodesic incompleteness in order to apply this result. For example, string theory is
a modification of general relativity in which singularities are defined in terms of the motion
of (quantum) test strings. It has been argued that several geodesically incomplete solutions
(i.e., singular spacetimes from the viewpoint of general relativity) are nonsingular by this
criterion [4]. Unless the string solution which approaches the negative mass Schwarzschild
metric at large distances is singular in the string sense, and hence unphysical, no stable
ground state will exist.

A similar result must also exist in quantum gravity. If the classical theory has regular
solutions with arbitrarily negative energy, then it is not likely to lead to a quantum theory
with a stable ground state. Note that these states constitute a new instability beyond those
usually considered in higher derivative theories [5]. Also, unlike the case of the classical
hydrogen atom in which the negative energy orbits are confined to a compact region of
phase space [5], here we expect a large volume of negative energy solutions since one can
superpose arbitrary numbers of them (at wide separation) with independent positions and
velocities.

Alternatively, suppose the negative mass solutions are classically singular, but the
quantum theory of gravity “smooths out” these singularities. Then there will again be
~states of arbitrarily large and negative energy. In particular, there have been frequent
suggestions that spacetime is essentially discrete in quantum gravity at the Planck scale
This possibility has been considered in string theory [6], and the nonperturbative canonical
quantization program initiated by Ashtekar [7], as well as other approaches (8]. If spacetitn
is fundamentally discrete, it is difficult to see what will prevent a state which resembii~

the negative mass Schwarzschild solution from existing in the theory.

There is one caveat to the above result which should be mentioned. If a theory h.~

3



negative energy configurations one usually cannot just “throw them out” since one would
expect them to be dynamically produced. However, it may be that such production is
prohibited, and the negative energy states simply decouple from the theory causing no
instability. An illustration of this is provided by Kaluza-Klein theory. It is known that
if one allows nontrivial topology, Kaluza-Klein theory admits nonsingular initial data sets
with arbitrarily negative energy [9]. However if fermions are included, the theory has two
noninteracting “superselection sectors”, in which the spinors are periodic or antiperiodic
about the compact dimension. One can show that the energy cannot be negative for the

periodic sector. Thus the pathological configurations would simply not be a part of the

stable and presumably physical sector of the theory.

However, it is difficult to imagine how such a superselection argument could be imple-
mented in the case discussed here. By just considering geodesics in the asymptotic region
or the scattering of gravitons in these configurations, we know that they do indeed act as
localized negative mass objects which couple to gravity in the usual way. Hence conven-
tional wisdom would indicate that they would be created in gravitational interactions, e.g.,
the collision of gravitational waves. Note that a four dimensional negative mass solution

would destabilize even the periodic sector of a Kaluza-Klein theory.

To summarize, we have argued that rather than being an undesirable feature of a
theory, singularities play a useful role — they enable a stable ground state to exist. Of course
our argument only requires the existence of timelike singularities that persist for all time.
-Of greater concern are the singularities which form from the evolution of nonsingular initial
conditions. It is possible that there exists a theory with a stable ground state in which
these singularities are removed. However most of the attempts to eliminate singularities
consist of brute force approaches which do not distinguish between singularities resulting
from collapse and those existing for all time. The lesson we should draw is that if we
wish to find a more complete theory which prohibits the formation of singularities from

regular initial conditions, we must find a more subtle mechanism which distinguishes time-
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independent and time-dependent strong curvature regions.

We thank Ted Jacobson for useful comments. RCM would also like to thank the ITP
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