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Abstract

It is commonly assumed that quantum field theory arises by applying ordinary quan-
tum mechanics to the low energy effective degrees of freedom of a more fundamental
theory defined at ultra-high-energy/short-wavelength scales. We shall argue here that,
even for free quantum fields, there are holistic aspects of quantum field theory that
cannot be properly understood in this manner. Specifically, the “subtractions” needed
to define nonlinear polynomial functions of a free quantum field in curved spacetime
are quite simple and natural from the quantum field theoretic point of view, but are
at best extremely ad hoc and unnatural if viewed as independent renormalizations of
individual modes of the field. We illustrate this point by contrasting the analysis of
the Casimir effect, the renormalization of the stress-energy tensor in time-dependent
spacetimes, and anomalies from the point of quantum field theory and from the point
of view of quantum mechanics applied to the independent low energy modes of the
field. Some implications for the cosmological constant problem are discussed.

Quantum field theory provides an excellent description of all phenomena observed in na-
ture, at least down to the distance scales probed by present accelerators. Nevertheless, there
is good reason to expect that it will break down at some distance scale lp (presumably of
order of the Planck length) and be replaced by a more fundamental theory. The most com-
pelling reason to expect such a breakdown comes from the quantization of gravity: Although
a mathematically rigorous formulation of quantum field theory on a classical gravitational
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background can be given, it does not seem possible to formulate a quantum theory of the
spacetime metric itself within the conventional framework of quantum field theory.

Even if quantum field theory does not provide a fundamental description of nature, one
can attempt to understand its success in describing low energy phenomena in much the same
way as one can understand why the continuum theory of elasticity is successful in describing
the long wavelength excitations of a crystal. In the case of a crystal, the continuum theory
clearly breaks down at the scale of the lattice spacing. Nevertheless, starting from the
fundamental lattice theory, one can derive an effective continuum theory that provides an
accurate description of all aspects of the long wavelength degrees of freedom.

It is widely believed that quantum field theory similarly arises as an effective field theory
from a more fundamental theory defined at ultra-high-energy/short-wavelength scales. We
do not disagree with this viewpoint and, indeed, this viewpoint has led to many fruitful
insights into the nature of quantum field theory. However, there is an associated view, which
is implicit in many discussions, that quantum field theory is nothing more than quantum
mechanics applied to the low energy effective degrees of freedom of the fundamental theory,
in much the same way as elasticity theory is just classical (or quantum) mechanics applied
to the effective degrees of freedom describing low energy excitations of a crystal. The main
purpose of this paper is to point out that, even for a free quantum field, there are some
fundamental features of quantum field theory that cannot be properly explained in this
associated viewpoint.

These fundamental features concern the holistic nature of renormalization theory. For
simplicity and definiteness, we focus our discussion on a free, massless, Klein-Gordon scalar
quantum field

ViV =0 (1)

in curved spacetime. (Similar arguments could be made for any other linear or nonlinear
quantum field theory.) As is well known, infinities arise in the calculation of any field quantity
® corresponding to a nonlinear polynomial expression in ¢ and its derivatives. Therefore,
“subtractions” must be done to give ® a well defined, finite meaning. From the quantum
field theoretic viewpoint, it is crucial that & be defined in a local and covariant manner
[1], [2]. The requirement that the “subtraction” be done in a local and covariant manner
greatly constrains the renormalization procedure. In particular, as proven in [1], it reduces
the ambiguities in any polynomial quantity ® to at most a finite number of parameters.
Let us now compare this situation with the picture obtained if we decompose the quan-
tum field ¢ into modes, and view these modes as independent degrees of freedom. First, we
divide these modes into “(ultra-)high-energy/short-wavelength” modes (w 2 1/lp) and “low
energy modes” (w < 1/lp), where ly denotes the physical length scale at which quantum field
theory breaks down. It would be reasonable to assume ly to be of order the Planck scale,
lo ~ (Gh/c®)'?, but we need not make any such assumption here. We do not know how
to accurately describe the “ultra-high-energy /short-wavelength” modes using the presently
known laws of physics, but we assume that these modes contribute negligibly to ®. On
the other hand, we assume that the degrees of freedom corresponding to the low energy
modes are described by ordinary quantum mechanics. As is well known, the sum of these



low energy mode contributions to any given nonlinear polynomial ® is absolutely enormous
(see below). Thus, subtractions are needed to obtain reasonable renormalized field quan-
tities. In this respect, the situation with regard to defining ® by such a truncated mode
sum calculation is neither better nor worse than the above field theoretic calculation; some
renormalization is needed in both cases. However, there is an important difference here in
how the renormalization is to be carried out. The decomposition of ¢ into modes represent-
ing its individual degrees of freedom is necessarily global in character. From the point of
view of an individual mode, there is therefore no natural way of enforcing the requirement
that the subtractions be done in such a way that the resulting ® is defined in a local and
covariant manner. In other words, the local and covariant character of ® is a property that
depends on the sum of all of the renormalized modes. An individual mode will have no way
of knowing whether its own subtraction is correct unless it “knows” how the subtractions
are being done for all other modes. Of course, one can make use of the enormous available
freedom to make arbitrary subtractions to cook up mode-by-mode renormalization schemes
that, by construction, reproduce the field theoretic renormalization prescription. However,
as we shall illustrate below, in curved spacetime, these schemes are necessarily so ad hoc and
unnatural—far worse than the familiar “vacuum subtractions” of Minkowski spacetime—
that it is very difficult to imagine that they could have any validity. The field theoretic
renormalization prescription makes sense only from a holistic point of view, not from the
point of view of individual modes. In this sense, even a free quantum field is much more
than the sum of its dynamically independent parts, and quantum field theory is much more
than merely quantum mechanics applied to the individual low energy degrees of freedom of
the field.

The holistic nature of renormalization in quantum field theory is disguised in Minkowski
spacetime on account of the fact that the locally and covariantly constructed Hadamard
distribution H(z,z’) that enters the quantum field theoretic renormalization prescription [1]
for ® happens to equal the expection value of p(z)p(z’) in the Minkowski vacuum state
|0). As a consequence, in Minkowski spacetime, the subtractions performed using H(z, ")
can be given a relatively simple mode-by-mode interpretation as “vacuum subtractions”.
However, no such accident occurs in a general curved spacetime. Indeed, in a general curved
spacetime, H(z,z’) can be defined only locally (i.e., for =’ close to =) and cannot be equal to
the expection value of ¢(z)p(z’) in any state. Normal ordering with respect to some “vacuum
state” cannot yield a correct renormalization prescription in a general curved spacetime—see
remark (3) on P. 303 of [1] for a formal proof of this statement—and there is no reasonable
mode-by-mode interpretation of the quantum field theoretic renormalization prescription.

Three concrete examples will serve to illustrate the above points. The first concerns the
energy of a Klein-Gordon field, eq.(1), in a 1 + 1 dimensional static spacetime (M, gu) of
spatial topology S!, with metric of the form

ds® = —dt* + L*d6*? (2)

where the range of the 6-coordinate is [0,27). This metric describes a flat universe with
closed spatial sections of size 2w L. As already mentioned above, the quantum field theoretic
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renormalization prescription for defining the stress-energy tensor, Ty, of ¢ involves a sub-
traction performed by using a locally and covariantly constructed Hadamard distribution
H(z,z'); one subtracts from the “point-split” expression for Ty, in terms of p(z)p(z’) a
similar expression constructed using H(z,z’) and then takes the coincidence limit. However,
since the spacetime metric (2) is locally flat, for ' near z the locally constructed Hadamard
distribution H (x, ') for the spacetime (M, g,») must be identical to the corresponding locally
constructed Hadamard distribution for two-dimensional Minkowski spacetime. This means
that the renormalization prescription for T, can be given the interpretation of a “vacuum
subtraction”, but what is being subtracted is not the vacuum energy of the modes of ¢
that are actually present in (M, g.») but rather the vacuum energy of the modes that hy-
pothetically would have been present if the spacetime were globally Minkowskian [5]! From
the quantum field theoretic point of view, this prescription is entirely natural, since the
construction of the stress-energy tensor should be local in the spacetime metric g,; and the
quantum field ¢, and it therefore should not care about the global topology of M. But,
in terms of the individual globally defined modes, this prescription makes no sense: Why
should the appropriate subtractions be based upon the energies of modes in some fictitious
Minkowski spacetime rather than the energies of the modes that are present in the actual
universe (M, gq5)?

Using the quantum field theoretic renormalization methods, one finds that the total
energy, Ec, of the ground state! is given by [3]

EC:_]_Q_L. (3)

This result is in close analogy with the Casimir effect for a field confined by conducting plates,
which has been verified experimentally [4]. The negative value of E¢ can be understood to
arise from the fact that there are, in a sense, fewer low energy modes of ¢ in the universe
(M, gap) than in Minkowski spacetime, so the Minkowski subtraction overcompensates for
the vacuum energy of the modes in (M, ga»).

Let us now attempt to reproduce eq.(3) energy by applying quantum mechanics to the
low energy degrees of freedom of the quantum field ¢. If one decomposes ¢ into its spatial
Fourier modes, one finds that the nth Fourier mode is precisely a harmonic oscillator with
frequency

Therefore, if each mode is put in its ground state but we only count modes with frequency
w < 1/ly, we obtain the total energy

Ey = Z “wp = Z 57~ i(L/zo)“’. (5)

IThe massless Klein-Gordon field does not actually have a ground state on account of the presence of a
spatally homogeneous mode which grows linearly with time. This “infrared divergence” is not relevant to
any of our considerations. All of our results rigorously apply to the Klein-Gordon field of mass m (which
does have a ground state) in the limit as m — 0.




This disagrees with eq. (3) not only in sign, but also by a factor of (L/lp)? > 1.

The above colossal value obtained for Ey by this calculation is, of course, very well
known and comprises what is usually referred to as the “cosmological constant? problem”.
However, we can attempt to “fix” the discrepancy between egs. (3) and (5) by adjusting the
zero of energy of the nth mode of the quantum field by an amount eg(n, L). As previously
mentioned, the fact that one has to do a subtraction here is not, by itself, necesarily worse
than what was done in the quantum field theoretic calculation, where a subtraction also was
necessary. The revised formula for the total energy of the ground state would then be

By=" |5 —eln,L)] . (6)

Clearly, with unconstrained freedom on the choice of €y(n, L), there is no difficulty in ar-
ranging for any answer that one wishes to get for £j. Thus, one can, of course, make choices
of €o(n, L) that yield agreement between the right sides of egs. (3) and (6). The difficulty is
that there are infinitely many ways of doing this, and none of them appear to be in any way
natural. Indeed, the following would appear to be two very natural conditions to impose on
eo(n, L). First, on a account of the invariance of ¢ under a scaling of the spacetime metric
(2), it would be natural to require €y(n, L) to respect this scaling and therefore be of the form
€o(n, L) = f(n)/L. Second, since the mode labeled by the integer Nn in a universe of size
2r N L is locally identical (up to normalization) to the mode labeled by integer n in a universe
of size 2nL, it would be natural to require €y(n, L) to respect this fact by depending on n
and L only in the form n/L. However, these two requirements would constrain €y(n, L) to be
of the form cn/L for some constant c¢. But this choice would then yield E} ~ (1 — 2c)L/4i2,
which does not agree with eq. (3) for any choice of c. Thus, these “natural” requirements on
€o(n, L) are incompatible with the Casimir effect. We do not believe that the Casimir effect
can be understood without invoking the holistic aspects of quantum field theory.

Our second example concerns the general problem of defining the renormalized stress-
energy tensor, Ty, in a general, time-dependent, globally hyperbolic, curved spacetime. We
have just argued that even in a static flat spacetime, the construction of T,, cannot be
understood without invoking the holistic aspects of quantum field theory, so the situation
in a general curved spacetime cannot be better. However, we wish to point out that the
general situation is actually far worse, i.e., one must go to much greater lengths to attempt
to account for the stress-energy of quantum field by subtractions performed on its individual
degrees of freedom.

2The reason for this terminology is that, in Minkowski spacetime, by Lorentz invariance, the expected
stress-energy in the vacuum state must be proportional to the metric. Therefore, an absurdly large value of
< Tap > would correspond to the presence of an absurdly large value of the cosmological constant in Einstein’s
equation. In fact, the insertion of a high energy cutoff as we have done here breaks Lorentz invariance
and—since each individual mode contributes a traceless stress-energy tensor—it is easy to see that the
unrenormalized mode sum for T, corresponding to eq.(5) would not be proportional to gu,. Nevertheless,
we will use the conventional terminology in referring to the enormous value of Ey as the “cosmological
constant problem”.



From the quantum field theoretic point of view, the calculation of Ty, in a general curved
spacetime proceeds in much the same way as indicated above for the Casimir effect. One
again performs a suitable subtraction using a locally and covariantly constructed Hadamard
distribution H(z,'). The only additional complication is that when spacetime curvature is
present, there is now a small amount of additional freedom in the renormalization prescrip-
tion, which allows one to modify the final result for 7,; by the addition of conserved local
curvature tensors of the correct scaling dimension [6]. In 4-dimensions, there are two such
curvature tensors, so there is a two-parameter freedom?® in the definition of 7.

Let us now try to construct Ty, by applying quantum mechanics to the low energy modes
of ¢, without invoking any holistic aspects of quantum field theory. We immediately face
a serious problem in that it is far from clear how to even define the “modes” of ¢: The
decomposition of a quantum field into modes requires a definition of “positive frequency”,
but there is no natural positive/negative frequency decomposition of ¢ in a non-stationary
spacetime. Nevertheless, we can proceed by making some arbitrary choice of “positive fre-
quency”, corresponding to some arbitrary choice of “vacuum state” |0). We can then write
down a mode sum formula for (0|7,,|0) analogous to eq. (5). Asin eq. (5), we will obtain an
enormous value for (0|T|0), so some subtractions are needed. But it is hard to imagine that
there could be any natural rule on what to subtract from each mode that would yield agree-
ment with the quantum field theoretic expression. In particular, as already noted above,
subtraction of the entire vacuum stress-energy—i.e., normal ordering—is incompatible with
the quantum field theoretic prescription. Furthermore, taking into account the known de-
pendence of H(x,z') on the spacetime metric, it is not difficult to see that in D dimensions,
the quantum field theoretic prescription for defining 7,;, involves the local subtraction of
terms that depend upon the derivatives of the metric up to Dth order. This means that
if we consider a two-dimensional spacetime with metric of the form (2) but with L now
allowed to depend upon ¢, then in order to reproduce the quantum field theoretic prediction
for energy, it would be necessary for the “vacuum energy subtraction” €y to depend not only
on n and L but also on dL/dt and d?L/dt*—even though the Hamiltonian for the individual
modes depends only on n and L. Again, we do not believe that it is possible to sensibly
derive the quantum field theoretic prediction for Ty, without invoking the holistic nature of
quantum field theory.

Our final example concerns anomalies. One of the most surprising aspects of quantum
field theory is that certain relations involving the field equations that are manifestly true in
classical field theory cannot be satisfied in quantum field theory. For example, in the case
of a Klein-Gordon field ¢ in 4-dimensional curved spacetimes, although eq. (1) of course
holds, it is impossible to define the renormalizations so as to satisfy both of the following
relations [7]

PV*Vap =0 (7)

VipVeV,p =0. (8)

31f we were to consider a massive Klein-Gordon field, then we also would have the additional freedom to
modify the definition of T, by terms of the form m*gqy and m2G .



(In the case of a conformally invariant field, the similar inability to simultaneously impose
analogs of egs. (7) and (8) is responsible for the existence of a trace anomaly in the stress-
energy tensor of that field.) From the quantum field theoretic point of view, the above
anomaly arises because in a general curved spacetime it is impossible to locally construct a
Hadamard distribution H(x,z’) that satisfies the Klein-Gordon equation in both z and z’
[8]. Consequently, the quantum field theoretic subtraction procedure fails to fully respect
the Klein-Gordon equation.

Any attempt to reproduce the above anomaly by applying quantum mechanics to the low
energy modes of ¢ would have to be truly bizarre. Each term in the mode sum formulas for
the left sides of egs. (7) and (8) would vanish, since the individual modes themselves do not
suffer any anomalies. Yet, one would nevertheless have to do some “subtraction” to obtain
agreement with the quantum field theoretic prediction. Again, we do not believe that the
existence of anomalies can be understood without invoking the holistic nature of quantum
field theory.

As already mentioned above, the absurdly large value obtained for the stress-energy
of a quantum field when computed by applying quantum mechanics without subtractions
to the low energy modes of the field is usually referred to as the “cosmological constant
problem”. In 4 dimensions, a calculation similar to that leading to eq. (5) above would yield
an expected energy density of order 1/I3, where 1/lp ~ 101° GeV if [ is assumed to be of order
the Planck length. By contrast, the actual energy density of our universe is only of order
[~ 10712GeV]*. If one were to view a quantum field as a collection of independent degrees of
freedom that know nothing about each other, then it is hard to imagine how—even allowing
for reasonable renormalization “subtractions” of the individual modes—cancellations of this
magnitude could occur. Furthermore, in the absence of some exact, unbroken symmetry such
as supersymmetry, it is equally hard to imagine how cancellations of this magnitude could
occur between different fields. Thus, the enormous discrepancy between the naive mode-sum
calculation and the observed energy density is therefore generally viewed as a very serious
“problem”. We do not share this view. As we have argued above, there are many aspects of
the theory of a quantum field that simply cannot be understood by viewing its low energy
degrees of freedom as being independent. The mode sum calculations like the one leading to
eq. (5) do not properly take into account the holistic aspects of quantum field theory. In our
view, it would be more fruitful to simply accept the holistic aspects of quantum field theory
rather than search for models where—by virtue of miraculous cancellations—the holistic
aspects do not need to be invoked*.

If one accepts the holistic aspects of quantum field theory, there is still a “cosmological
constant problem”, but it is rather different than the usual formulation of it. The puzzle
is not, “Why is the observed energy density of the universe so small?” This is only a
puzzle if one believes that it should be correct to calculate the stress-energy of a quantum
field by treating its low energy modes as completely independent degrees of freedom that

40f course, it remains a very significant puzzle as to why quantum field theory possesses holistic aspects,
i.e., how they arise from the more fundamental, underlying theory. However, it is likely that we will need a
much deeper understanding of the underlying theory in order to account for this.



know nothing about each other, in which case implausible cancellations would be required.
Rather, the puzzle is, “Why is the cosmological constant so large?” Quantum field theory
predicts that the stress-energy tensor of a free quantum field in an adiabatic vacuum state
in a slowly expanding 4-dimensional universe should be of order of L=*, where L denotes
the size and/or radius of curvature of the universe. For our universe, 1/L would be of order
~ 107%2 GeV. But observations of type la supernovae and the cosmic microwave background
strongly suggest that, at the present time, the dominant component of stress-energy in the
universe is smoothly distributed (i.e., not clustered with galaxies) and has negative pressure.
The energy density of this so-called “dark energy” is thus [~ 10712GeV]%, i.e. roughly the
geometric mean of the unsubtracted mode sum and quantum field theoretic predictions for
vacuum energy density. It is, of course, not presently known whether this dark energy
corresponds to the vacuum energy of some field, the potential energy of some field, some
other form of matter, or simply corresponds to the presence of a cosmological constant term
in Einstein’s equation. In any case, however, it is seems very difficult to account for its energy
scale. This is a true puzzle. We do not have any new proposals to make here concerning
the nature of dark energy. However, if dark energy does correspond to vacuum energy of an
interacting quantum field, it is our view that its properties will be understood only by fully
taking into account the holistic nature of quantum field theory.
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