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Abstract

In the non-relativistic and quasi-static limit, it is possible to map exactly
the system of galaxies in the observable universe onto an Ising magnet. Tech-
niques from the theory of critical phenomena as applied to magnets can then
be employed to calculate rigorously the galaxy-to-galaxy correlation function,
whose critical exponent is predicted to be between 1.530 to 1.862, to be com-

pared to the empirical/observational value of 1.6 to 1.8

The way in which galaxies are distributed at large scales in the observable Universe
is codified by the so-called galaxy-to—galaxy correlation function £(r), empirically deter-
mined to be of the form ~ 777, where r is the distance between galaxies and the exponent
v ~ O(1.6t01.8) [1,2]. This empirical function plays an important role in cosmology as it
provides a means for quantifying the departure from homogeneity and randomness, i.e., is a
direct measure of the way the large scale structure in the Universe organizes itself [3]. Any
theory purporting to provide a first principles explanation of this large scale structure must

account for the form of this function and its attendant exponent. It is the purpose of this



essay to demonstrate how this may be done on the basis of simple Newtonian gravity using
well-established results from the theory of critical phenomena [4].

Let p(r) denote the spatial density distribution of galaxies, then, the departures from
perfect homogeneity are given in terms of dp(r) = p(r) — p where p is the average density.
The joint probability distribution for finding a galaxy at position r; given that there is
one at r; is {ga(r; — ;) =< 6p(r;)dp(r;) > /p?, the angular brackets denoting a suitable
averaging over large samples of galaxies [3|. Heretofore, this function has only been inferred
numerically from observational data as summarized, for example, in galaxy catalogs. As we
are not interested here in the internal structure, or morphology, of the individual galaxies,
we shall regard the collection of galaxies as a system of discrete, spatially localized masses.
In the limit of slow background expansion and weak gravitational field, the energy of the

system is dominated by the non-relativistic Newtonian gravitational interaction energy
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where m; is the mass of the galaxy at site r;, and the prime indicates that the sums are over
1 # j. The overall expansion, or Hubble flow, of course holds the system of galaxies apart
and prevents the otherwise imminent gravitational collapse. Note that in this view of the
realm of the galaxies, the density contrast function dp(r;)/p is equal to 1 if there is a galaxy
at r; and is equal to —1 if there is a void or local deficit at r;. Since the observed relative
mass dispersion for galaxies is dm/m = 107, it is quite reasonable to assume equal mass
galaxies with a common mass which we denote by m,. It follows that one can establish the

following natural mapping between the m; and a double-valued (+) “spin”-variable o;:
mye
m; = 7(0,; + 1). (2)

A galaxy at site r; corresponds to spin o; = 1 (spin-up) while a void at site r; corresponds
to 0; = —1 (spin-down). This mapping between spatially localized galaxies and spins is
the key to the connection between cosmological large scale structure and spin models for

magnets which we now develop. Using it, together with H;,,, it is possible to write down the
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spin-language partition function for the ensemble of gravitationally interacting equal-mass
galaxies in the quasi-static limit:
Grav 1 -1 1
Z vingl Bl = > exp (Z Z"i A oj+ 1 Z‘Tth) ; (3)
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where Ai‘j1 = ﬂlf—'féﬁ, is the spin-spin coupling and h; = 3; ﬁﬂ—gr% This partition function
is recognized as one belonging to a spin system in three dimensions coupled to an ambient
magnetic field h; at site j produced by the remainder of the spins. Because of the exact
correspondence in (2), the statistical mechanical and critical behavior of this equivalent spin
model must coincide with that for the gravitationally interacting galaxy system. For the
purposes of extracting the correlation function and its critical behavior, it proves convenient
to have the above discrete partition function cast in terms of continuous random variables.

This may be achieved exactly by means of the Hubbard-Stratonovich (or gaussian or Laplace)

transformation, [5], which transforms (3) into a path-integral for a continuous field theory:
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As is well known [6], the connected two-point function for the spin system (3) and the
field theory (4) are identical. Moreover, the random fluctuations in the field ¢ lead to an
anomalous dimension 7 that shifts the canonical dimension of the field for |r—r'| — co. The

calculated scaling behavior for the spin-spin (=galaxy—galaxy) correlation function is [7]

lim (¢(r)ep(r)) = lim Egu(lr—1'|) ~|r— r/|~(d=2+m (5)
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Here d is the dimension of space (d = 3) and 7 is the critical exponent for the pair correlation
function whose value (0.0198 — 0.064) differs from zero due to the fluctuations in ¢. Thus,
for a static background, we predict the exponent 4. = (147) to be in the range 1.0198 <

Vstatic S 1.064



The above calculation has been performed for a quasi-static ensemble of galaxies. But
the Universe is expanding and the effects of this expansion will modify the values of the
critical exponents. From the theory of dynamical critical phenomena, we know that time
enters into the correlation function by a modification of its argument [8], viz., the correlation

function of Eq. (5) £(r) is modified to &(r;t), according to the rule
§(r) = &(r;t) = F(r/i(2)), (6)

where [(t) ~ t¢ is a function of time and 7 denotes the comoving coordinate, 7comoving, Which

is related to the physical coordinate via
Tphysical = a(t) T comoving, (7)

with a(t) the scale factor for the background spacetime. Depending on whether or not the
order parameter is conserved, the non—equilibrium hamiltonian from which Eq. (1) derives
by diffusion or relaxation, corresponds to a so—called Model B or A. In both cases one
may show (Ref. [9]) from the equation describing the evolution of the order parameter that
¢ =1/3 for Model B and ¢ = 1/2 for model A.

For a matter dominated expansion, the case we are interested in, a(t) o t¥/3, and thus

for a given physical separation, the relation between time and the comoving coordinate is
L~ (Tcomoving)_?’/?- (8)
This means that the function {(t) scales as
1) = 1€ = (Feomaving) /2. (©)

Putting together these facts in (5) and (6) yields the scaling behavior of £(r; ¢):

_ —(d—2+n)
£(r;t) = (Tcomoving/ Tco?v%z%ing)

)*(d—2+n)(1+3</2)_ (10)

= ('rcomoving

In other words, the critical exponent resulting from taking into consideration, both the

expansion of the Universe and dynamical critical phenomena effects, is
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y=(d—-2+n) x (1+3¢/2). (11)

This is our key result. The predicted (calculated) value for 7 is between 1.530 and 1.596
for ¢ =1/3 (for a conserved order parameter) and between 1.75 to 1.862 for ( = 1/2 (non-
conserved order parameter). These values are to be compared with the values inferred from
current galaxy catalogs, which range from 1.5 for the APM survey, to 1.8 for the Lick survey
[2,1].

We have thus accomplished what we set out to do, namely, provide a first-principles
calculation of the galaxy-galaxy correlation function, of central importance in cosmology,
using standard methods of statistical mechanics and the theory of critical phenomena, the
language suitable for treating magnets and other states of matter. Naturally, one might (and
should) ask why this calculation is successful, in other words, what does a system of galaxies
have to do with a spin model or a magnet? The key point that justifies our calculation of the
critical exponents is the universality hypothesis, according to which rather disparate physical
systems will exhibit identical critical behavior provided the systems in question possess the
same space dimensionality and have order parameters with the same dimensionality (or
number of independent components). We see that this is the case here: d = 3 for both
systems, while the scalar order parameter associated with the density contrast and the
magnetization are one-component order parameters for the galaxy system and the 3d Ising
model, respectively. In other words, both systems belong to the same universality class. This
fact allows one to study the critical behavior of complicated real systems (expanding gas
of gravitationally coupled galaxies) in terms of simple model hamiltonians (two component
spins on a lattice). Thus, we are rigorously led to expect them to have the same values for

their critical exponents.
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TABLES

TABLE I. Calculated values for the galaxy-galaxy correlation function critical exponent

Method of Calculation YStatic 7gzpanding 7gz§mnding
Series estimates 1.056 + 0.008 1.584 £ 0.012 1.848 £ 0.014
O(e) 0 1.5 1.75
O(€?) 1.0198 1.530 1.785
O(e?) 1.037 1.555 1.815
O(e*) 1.029 1.543 1.801




