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It is assumed that the singularities which occur in gravitational
coliapse are not visible from outside but are hidden behind an event
norizon. A black hole on a spacelike surface is defined to be a connected
region on the surface bounded by the event horizon. As time increases,
black holes may merge together but may never bifurcate. The areas of the
boundaries of the black holes can never decrease. These areas are related
by the Carter-Israel conjecture to the masses and angular momento of the
black holes. Together with the previous results this gives upper bounds
on the amount of energy that can be extracted from the black holes. In
p#rticular, if the bursts of gravitational radiation that Weber reports

are produced by collisions of black holes, then the black holes must

have masses of at least a hundred times that of the sun.



It has becen known for some.time that a nonrotating star of more than about
two solar masses has no low temperature equilibrium configuration. This meaus
that such a star must undergo catastrophic collapse wﬁen it.has exhausted its
nuclear fuel unless it has managed to eject sufficient matter to reduce its
mass to.less than twice that of the sun.. If the collapse is exactly.spherically
symmetric, the metric is that of the Schwarzschild solution outside the star and
has the following properties:

1) The surface of the star will pass inside the Schwarzschild radius r = 2Gc M
After this has happened there will be closed trapped surfaces ’“around the star.

A closed trapped surface is a spacelike 2-surface such that both the future
direc;ed families of null geodesics orthogonal to it are converging. In other

words, it is in such'a strong gravitational field that even the outgoing light

from it is dragged inwards.
2) There is a space-time singularity.

3) The singularity is not visible to observers who remain outside the
Schwarzschild radius. This means that the breakdown of our present physical -
theory which one expects to occur at a singulafity cannot affect what happens
outside the Schwarzschild radius and one can still predict the future in the

exterior region from Cauchy data on a spacelike surface.

One can ask whether these three properties of spherical collapse are
stable, i.e. whether they would still hold if the initial data for the collapse
were perturbed slightly. This is.vital because no real collapse situation will
ever be exactly spherical. From the stability of the Cauchy problem in geucral

relativity3 one can show that a sufficiently small perturbation of the initial



data on a spacelike surface will produce a perturbation of the solution which
will remain small on a compact region in the Cauchy development of the surface.

shows that property (1) is stable, since there is a compact region in the

This
Cauchy development of the initial surface which contains closed trapped
surfaces. It then follows that property (2) is stable provided one makes
certain reasonable assumptions such as that the energy density of matter is
always positive. This is because the existence of a closed trapped surface
implies the occurrence of a singularity under these conditions4. There
remains the problem of the stability of property (3). Since the question of
whether singularities are visible from outside depends on the solution at
arbitrarily large times, one cannot appeal to the result on the stability of
the Cauchy problem referred to above. Nevertheleés it seems a reasonable
conjecture that property (3) is indeed stable. 1If this is the éase, we can
still predict what happens outside collapsed objects, and we need not worry
that something unexpected might occur every time a star in the galaxy
collapsed. My belief in this conjecture is strengthened by the fact that
Penrose5 aﬁd I have tried and failed to obtain a contradiction to it, which
would show that naked singularities must occur. I shall therefore assume
that property (3) is stable. 1In Section 2a precise definition of a black hole
is given in terms of an event hérizon and it is shown that the area of a 2-
dimensional section of this horizon cannot decrease with time. This area is
related by the Carter-Israel conjecture in Section 3 to the maés and angular
momentum of the black hole. This result can be used to place an.upper bound
on the émount of gravitational radiation that can be emitted when two black
holes collide and coalesce. This may be of importance in connection with

Weber's observations of short bursts of gravitational radiation.



2. The Tvent Hovizon

In order to discuss the region outside a collapsed object one necds a
precise notion of infinity in an asymptotically flat space-time. This is
provided by Penrose's concept of a weakly asymptotically simple space ; the

spacetime manifold M of such a space can be imbedded in a larger manifold

M on which there is a Lorentz metric g which is conformal to the space-
ab
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zero and has non-fanishing gradient on the boundary of M in M . This
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boundary consists of two null hypersurfaces .J  and J which each have
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topology S xR and which represent future and past null infinity respec-
tively. One can then interpret property (3) as saying that it should be
possible to predict events near 3* . I shall therefore say that a weakly

asymptotically simple space is (future) asymptotically predictable if there

~
T

+ .
is a partial Cauchy surface S such that \j lies in the closure in M of D (

2]

)
the future Cauchy development of S . (A partial Cauchy surface is a spacelike
surface without edge which does not intersect any nonspacelike curve more than
once. D+(S) is the set of all points p such that every past directed non-

spacelike curve from p intersects S if extended far enough.)

Roughly speaking one would expect a space to be asymptotically predictable
if there arc no singularities in 7 , the future of S , which are naked,
i.e. which lie in J—(j+) , the past of future null infinity. One can make
this more precise. Consider an asymptotically predictable space in which there

are no singularities to the past of S (Fig. 1). Suppose therec is a closed

. +
trapped surface T in D (S) . Then there will be a singularity to the future



T , i.e. there will be a nonspnenl o geodesic in  J (T) which is
futurc incomplete. Can this geodesic be seen from 2 The answer is no.

B =, 4t . . . PR A .
For suppose T intersected J () ) . Then there would be a point pé& | in
+ . . . g v
J (T) . The past directed null geodesic generator of .} through p would

+ . .
eventually leave J (T) and so would contain a point q of the boundary
.+ . . .
J (T) . Now the boundary of the future of any closed set W 1is generated by
null geodesic segments which either have no past end-points or have past end-
. 24 . “+
points on W . Since the generator )\ of J (T) through gq would enter
D' (S) it would have to have an end point on T since otherwise it would inter-
sect S and pass into the past of S which would be impossible, as T 1is to
the future of S . The generator ) would intersect T orthogonally.
However, as T 1is a closed trapped surface, the null geodesics orthogonal
. . L. ,a b
to T are converging. Together with the weak energy condition: Tth Ko >0
. R a . . ) . .
for any timelike vector K, this implices that there will be a point conjupate
to T within a finite affine lengsth on any null geodewic orthogonal tlo '!“1. oty
on such a geodesic beyond the conjugate point will lie in the interior of
+ . 2,4 e
J (T) and not on its boundary . However the generator ) of J (T) would
. .. Py a+ . + . . .. .

have infinite affine length from T to j since j is at infinity. This

. . . . it
establishes a contradiction which shows that T does not intersect J—(j )

. + . . e v+
Thus the future incomplete geodesic in J (T) 1is not visible from j .

- ut — .
Since J (§') does not contain T , its boundary J (J7) must be non-

empty. This is the event horizon for ) and is the boundary of the region

from which particles or photons can escape to infinity. It is generated by

null geodesic segments which have no future end-points. The convergence g



of these generators cannot be positive. Tor suppose it were positive on suine

i L
open set U of J (") . Let T be a spacelike 2-surface in U . Then the

J
outgoing null geodesics orthogonal to F would be converging. One could
- S -
deform a small part of F so that it intersected J () ) but so that the
outgoing null geodesics orthogonal to F were still converging. This again

would lead to a contradiction since the null geodesics orthogonal to T could

. o
not remain in J (F) all the way out to J

If there were a point on the event horizon which was not in DT (s) , the
future Cauchy development of S , a small perturbation could result in there
being points near j+> which were not in D+(S) . Since I am assuming that
asymptotic predictability is stable, I shall slightly extend the definition to
exclude this kind of situation. In an asymptotically predictable space

+ L + :
J(S)a J(J) is in D'(S) . I shall say that such a space is strongly

asymptotically predictable if in addition J+(S) n J(J+) is in D'(S)

In such a space one can construct a family S(t) (t » O) of partial

Cauchy surfaces 1in D+(S) such that

, 0t 8(k,) e J+(S(t1))

(b) Each S(t) intersects 3+ in a 2-sphere A(t)

(a) For t

: - +
(¢) For each t > 0, S(t) U[j+fw J‘(A(t))] is a Cauchy surface for D (S)

The construction is as follows. Choose a suitable family A(t) ot 2-spheres

on 3+'. Put a volume measure on M so that the total volume of M in this
6 . +
measure is finite . Define the functions f(p) and h(p,t) p =D (S8) as the

volumes of J+(p)(ﬁ D+(S) and FJ—(p)- J_(A(t))]/W pY(s) respectively. They

will be continuous in p and t . The surface S(t) is then defined to be the



S b -

set of points p such that h(p,t) = tf(p)

For sufficiently large ¢t , the surfaces S(t) will intersect the event

horizon and so B(t) defined as S(t) - J?(%7+) will be nonempty. I shall

define a black hole on the surface S(t) to be a connected component of B(t).
In other words, it is a region of S(t) from which there is no escape to }+ .
As tiﬁe increases, black holes may merge together and new black holes may be
created by further bodies collapsing but a black hole can never bifurcate.

For suppose the black hole Bl(tl) on the surface S(tl) divided into two
black holes Bz<t1) and B3(t2) by a later surface S(tz) . Then Bz(tz)

and B3(t2) would each have to contain points of J+(Bl(tl)) . However every
nonspacelike curve which intersected Bl(tl) yould also intersect S(t2)

Therefore J+(Bl(t1)) N S(t2) would be connected and would be contained in

B2(t2) U B3(t2)

Since the generators of j-(j+) have no future end points and have
convergence o < O , the area of bBl(t) cannot decrease with t where
bBl(t) is the boundary in S(t) of a black hole Bl(t) . If two black
holes Bl(tl) and BZ(tl) on the surface S(tl) merge to form a single
black hole B3(t2) on a later surface S(t2) , then the area of bB3(tl)
must be at least one sum of the areas of bBl(tl) and sz(tl) . In fact it
must be strictly greater than this sum because 033(t2) contains two disjoint
closed sets which correspond to the generators of j_(3+) which intersect
bBl(tl) and sz(tl) . Since bBB(tz) is connected, it must also contain
an open set of points which correspond to generators which have past end
points between t) and t. . These results will be used in the next section

1

to place certain limits on the possible behaviour of black holes.



3. The Carter-Israel Conjecture

In a collapse that was strongly asymptotically predictable one would
expect the solution outside the event horizon eventually to approach a
stationary state. This has lead to a study of strongly asymptotically
predictable spaces which are exactly stationary. Israefrhas.shown that the
Schwarzschild solution is the only empty static such solution in which the
surfaces of constant potential are topologically S~ x R™ . Carter has shown
that the empty stationary axisymmetric such solutions form two parameter

families. The two parameters represent the mass m and angular momentum

. ac + . .
per unit mass o as measured on ) . One such family is known: mnamely,
the Kerr solutions for m > O and a <m . It seems unlikely that there

are any others. The Carter-Israel conjecture is therefore that the solution
outside a black hole B(t) will settle down to the Kerr solution with the

same mass and angular momeﬁtum as that measured on the 2-surface A(t) on ﬁ+.
If this is the case the area of the 2-surface oB(t) will approach the area

of a two-section of the event horizon in the Kerr solution. This area is

8ﬂG2c_4m(m + (m2 - az)%) (1)

Consider a situation in which a black hole B(tl) has settled down by
a surface S(tl) to a Kerr solution with paramcters my and ap - Suppose
the black hole now interacts with various particles or fields and then settles

down by a surface S(tz) to a Kerr solution with parameters m, and a,

The area of CB(tz) must be greater than the area of CB(tl) . Therefore
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ml(ml : (ml ay ) < ﬂ‘z(m2 (m, ) ) (2)

o . . . .
Using an idea of Penrose 7 Christodolodl)nas shown that one can get arbitrarily

near the limit set by this inequality. 1In particular, if a, is less than a;
thei m, can be less than my . This means that by reducing the angular

momentum of a black hole one can extract a certain amount of energy from it.

One can regard. this energy as the rotational energy of the black hole.

Consider now a situation in which two sfars a long way apart collapse to
form black holes Bl(tl) and Bz(tl) on a surface S(tl) . One can neglect
the interaction between them and take phe areas of bBl(tl) and sz(tl) to
be given by formula (1) with the values of the parameters m o, oay and m, s a,
respectively. Suppose the two black holes now collide and merge to form a single
black hole B3(t ) on a later surface S(tz) . In this process a certain amount
of gravitational radiation will be emitted. By the conservation law for weakly
asymptotically simple space-times, the energy of this radiation will be
(ml +m, - m3k¥{ This is limited by the requirement that the area of CB3(t2)

must be greater than the sum of the areas of bBl(tl) and sz(tl) . This

gives the inequality

2 2.% , 2 2.3 2 2.%
m3(m3 + (m3 - a, ) ml(m1 + (ml -3 )%) + mz(m2 + (m2 - a, )°)
The efficienc C= | )"1 ( | - ) e o { 1 e
¢ Cl lLl(_l\Cy I H]l 1112 ml le IHJ 0] conversiron o resl oannss cueriny
into radiation is always less than % . 1If a; =a, = O, then ¢ <1 - 27"

An interesting special case occurs when two black holes with angular momentum

have their rotation axes aligned along the direction of their approach to each



’

other. As this situation is axisymmetric, no angular womentum can be carviad

Thy

by the gravitational radiation. 1f the angular mowmenta are in the same

sense they will add up and the amount of radiation that can be emitted will be
le h if they had it S Thi ggests that the att ti force
less than 1if they had opposite senses. his suggests that the attractive force

between two black holes may depend on the relative orientation of the rotation

axes.

These limits may be important in connection with Weber's recent reports of

11,121
short bursts of gravitational radiation ’Lj.

The energies in these bursts
seem so large that one cannot account for them by nuclear reactions since these
only release about one per cent of the rest mass energy. Two possibly more eff{i-
cient processes are gravitational collapse or the capture of one black hole by
another. In the former case, one would expect at least a small fiaction of the
energy to be emitted as electro-magnetic radiation or neutrinos. ‘The fact that
these have not been observedl4’15favours the second process. In this case the
limits above imply that the black holes must have masses of about one hundred

times that of the sun. Such masses would produce bursts of gravitational

radiation whose energies were mostly at about the frequency at which Weber observes

Acknowledgement

I am grateful to George Ellis and Roger Penrose for some useful discussivas.



o AT -

F:;f}ur‘e /; )



Penrose, R. Phys. Rev. Lett. 14, 57 (1965).

Penrose, R. in Battelle Rencontres (1967) Ed. C.M. de Witt and
J.A. Wheeler, published by Ben amin, New York 1968.

Hawking, S.¥W. and Ellis, G.F.R. Singularities, Causality, Cosmology,

Cambridge University Press, to be published.
Penrose, R. and Hawking, S.W. Proc. Roy. Soc. A 314, 529 (1970).
Penrose, R. Seminar at Cambridge University, January 1971 (unpublished).
Geroch, R.P. Domain of Dependence. In J. Math. Phys. 11, 437, 1970.
Israel, W. Phys. Rev. 164, 1776 (1967).
Carter, B. Phys. Rev. Lett. (1971).
Penrose, R. Nuova Cimento Serie 1, 1, Numero speéiale 252 (1969).
Christodolou, D. Phys. Rev. Lett. 25, 1596 (1970).
Weber, J. Phys. Rev. Lett. 22, 1320 (1969).
Weber, J. Phys. Rev. Lett. 24, 276 (1970).
Weber, J. Phys. Rev. Lett. 25, 180 (1970).
Jelley, J.V. Nature (1970).

Bahcall, J. Report at the 5th Texas Symposium on Relativistic

Astrophysics, Decemver 1970.



I
1962.
fields

I

BIOGRAPHICAL SKETCH

was born in 1942, I obtained a B.A. in Physics at Oxford in
Since then I have been at Cambridge. My research is in the
of general relativity and cosmology.

am married and have two young children.

S.W. Hawking



