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Summary

It is shown that in classical general relativity, if space-time is
nonempty at one time, it will be nonempty at all times provided that the
energy momentum tensor of the matter satisfies:a physically reasonable
condition. The apparent contradiction with the quantum predictions for the
creation and annihilation of matter particles by gravitons is discussed
and is shown to arise from the lack of a good energy momentum operator for

the matter which obeys the covariant conservation equation,



1 Introduction

In the general theory of relativity it is well known that the
equations Ta25= 0, which express the local conservation of energy and
momentum, cannot be integrated to give conservation laws over a region,
This is because the tensor Tab represents the energy-momentum only of
matter fields and not of the gravitational field, It is a matter of common
experience that the energy of a system is not conserved unless one also
takes into account its gravitational energy. In Newtonian theory the
concept of gravitational energy is well defined but in general relativity
this is unfortunately not the case.for arbitrary fields, However for a
bounded system in an asymptoticelly flat space-time one: can define a
total energy or mass which represents the energy of both the matter and
the gravitational field and which decreases at a rate which can be
interpreted as the rate at which energy is carried away to infinity by
gravitational radiation, (Bondi, ven der Burg and Metzner 1962, Newman
and Unti 1962, Penrose 1963, Price and Thorne 1969). The question then
arises: could the system radiate away all its mass as gravitational waves
and leave just empty space? It will be shown that it could not in the
classical theory if Tab satisfies a physically reasonable condition,
That is to say a space-time which is non-empty at one time must be non-empty
at all times and conversely that one which is empty at one time must be
empty at all times, This result depends only on the equations Ta'b;b =0
and not on the field equations,

This result would seem to be in contradiction with the non zero

cross-sections which have been calculated for such processes as the

amnmihilation of a pair of particles into gravitons (see, for example ,De Witt
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1968). The reason for this discrepancy between classical and quantum
theories are discussed in Section 3, It seems to be related to the
difficulty of defining a local energy-momentum operator for the matter

fields in a curved space-time,

2 Classical Theory

The energy-momentum tensor will be said to satisfy the dominant

energy condition if for every observer the local energy density TabUan

is non-negative and the local energy flow vector TabUa is non-spacelike
where U% is the velocity vector of the observer (Ua Ua > 0). The first of
these would seem to be required by local quantum mechanics and the second
by causality. They are satisfied by all known forms of matter, With a bit
of algebra the dominant energy can be shown to be equivalent to the
requirement that in any orthonormal tetrad the energy component Too should
be greater than or equal to the absnlute values of the other components of

the energy-momentum tensor 1i.,e

T > ,Tabl for eack ayb.

For a fluid with energy density p and principal pressures p, (i =1, 2, 3)
this will hold if and only if R P, - This is a very reasonable
requirement since if the pressure were to exceed thg energy density, there
would be sound waves which travelled faster than light,

We shall show that if the dominant energy condition holds, a region
which is empty initially remains empty provided no matter flows in from
outside, To be more precise we shall show that Ta

b

region ¥ whose boundary oF consists of a part (aF), on which Tab vanishes

vanishes in a compact

and a part (BF)2 whose outward normal is future directed and timelike or

null, We shall assume that there is a function t whose gradient is everywhere
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future directed and timelike, Such a function will exist provided
space-time is not on the verge of violating causality (Hawking 1968).

Let H(t) denote the spacelike surface &= t' and let F(€3 denote
the part of F to the past of H(¢’), Consider the volume integral

ab ab
I(t) = | (T t;a);b"w: T t;abdu-

F(t) F(t)

where d:v==J%hAi is the invariant volume element, By Gauss's theorem
this can be transformed into an integral over the boundary of F(t),

ab
I(t) =17 t,,dS,

AF(t)

The boundary of F(t) will consist of F(t)/\(aF)1, F(t)/\(bF)z and FpH(t).

Since T ., is zero on (bF)1,

ab
I(t) = +
F(t)n(aF)2 FaH(t)
By the dominant energy condition the first term on the right is non-
negative since the outward normal to (HFLL is future directed., Thus

I(t) = tT‘*‘th dvy, 5(t) =

(t)

Since F is compact there will be some upper bound to the components of

b
FAH(t) T 6, S

t-ab in any orthonormal tetrad whose timelike vector is in the direction

of t‘a' Thus, by the dominant energy condition there will be some € O
2

such that on F

ab ab
T t;ab CT ;atib

The integral over F(t) can be decomposed into an integral over the

surfaces H(t') followed by an integral with respect to &':
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() ckyt{£58b £, 45,) dt"
NH(t)

d
Therefore 3¢ J(t) ¢ ¢ J(¢).

But for sufficiently early values of t, H(t) will not intersect F and
so J(t) will vanish, Thus J(t) will vanish for all t which implies that
Ta'b venishes on F,

In other words, if space-time is empty at one time, then it will
remain empty providing that matter-does not come in from infinity.
Conversely, a bounded system which is present at one time cannot fail to

be present at all other times,

3 Quantum Theory

To try to explain the apparent contradiction between the result of
the previous section and the nonzero cross-sections which have been calculated
for the creation or annihilation of particles by gravitons we shall
consider the case of a Hermitian scaler field § of mass m which obeys the
covariant Klein-Gordon sequation
g6, +m2f =0,
H
As the field equations were not used in previous section, we can take
the metric to be a given external (unquantised) field unrelated to any
matter content, TFor simplicity we shall consider a space-time consisting
of initial and final flat space regions NH and M, separated by a region

3

M2 in which the curvature is nonzero. In M1 and M3 the operator

¢ behaves as that of a free field and may be given the standard quantum
field theory interpretation, We may decompose ¢‘into ¢1# which has only

positive frequencies on M, and ¢1- which has only negative frequencies

.1



f(x) = p,* (x) + 8,7 (x)

= %‘ (£4(x) &+ ;M(x) %)

where the 2,4 are operators independent of position and the f, are a complete

1a

orthonormal set of complex functions which satisfy the covariant Klein-Gordon

equation and contain only positive frequencies on WH. Similarly ¢ may be

decomposed into ﬁ; and ﬂ;, its positive and negative frequency parts on M_,

3
However because of the intervening curvature in the region Mz.¢5+(x) will not
in general be equal to ﬁn (x). In other words, a solution f1 @ of the
covariant Klein-Gordon equation which has only positive frequency components

on M, may have a negative frequency component on M It is this intermixing

1 3°
of the positive and negative frequencies which is responsible for the creation
or annihilation of particles by the gravitational field, For in M,, p:(x) and
ﬁ;(x) may be interpreted as the operators which respectively annihilate and

create a particle at the point x, Thus the condition on the state-vector [ >

that there should be no particles in M, is not that f(x)] > = O but that

1
¢I(x)| > =0 for all x in M,. By the covariant Klein-Gordon equation ¢1+(x)l >
will then also be zero for x in M2 or MB' However the particle annihilation

operator in M,_ is ﬁ;(x) and because of the frequency mixing, ¢;(x)l >

3

may be nonzero corresponding to a nonzero probability of finding a particle

at the point x in M For any reasonable gravitational field this probability

3.
will be very low, Parker (1968) has calculated that the rate of production
of n° mesons by the gravitational field of the universe is about one particle

a second in the whole universe,

The energy-momentum tensor for a classical scalar field ﬁ satisfying the

covariant Klein-Gordon is

_ . 1 242 _ cd
Tab = ¢;&¢;b + :°7gab(m ¢ ﬂ;cﬂs;dg )
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This obeys Tab;b = 0 and satisfies the dominant energy condition, There is
difficulty however in defining an energy-momentum operator in quantum theory
for if in the above expression one regards the ¢'s as operators, one obtains
an operator whose expection value even in flat, empty space is infinite,

This is because there are negative frequency parts (creation operators) of f
standingighe right of positive frequency parts (annihilation operators),

In flat space-time one way of overcoming this difficulty is to adopt normal
ordering for products of ﬁ's i,e, decompose the ﬂ's into positive and
negative frequency parts and rearrange the terms so that the negative
frequencies are to the left and the positive to thqiight. However this will
not work in curved space-time since, as we have seen, this spliffing into
positive and negative frequency parts is not possible in general, Another
possible way round the difficulty would be to try to define the energy momentum
operator as the limit of a nonlocal operator in which the two ﬁfoperators are
referred to different points and the vacuum expectation value is subtracted
out. However this operator does not satisfy the
covariant conservations Ta'b s = 0 in a general space-time, In fact there

is no operator which satisfies these equations and hes the right properties

to be interpreted as the energy-momentum operator, One may ask: How then

is the energy-momentum tensor to be defined which appears on the right of the
Einstein equations? The answer is that in the classical corresponeence

limit the energy-momentum tensor may be taken to have the classical form
where the function § (x) is the expectation value ¢ § (x) > of the operator,
Note that this expectation value may vanish even when there are particles
present (in flat space it vanishes for any state with a definite number particles).

However the classical correspondence limit is made for a statewwhich does not

have an exact number of particles but is a superposition of a Bumber of states:
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t > = 24 Cn.n,_----nh l"""*) =y N>

Ayha, .

where [n,n, -~ A > denotes a state which has initially n, particles in the state

1

described by f1 and so on, If the constants Cn.n‘_‘ vary slowly with

. nk

n,,n

y . « o and the slight frequency mixing is neglected

2

¢ px) > - X Chn e gm({(w}) .

"'l"‘_’...

The energy-momentum tensor constructed from this expectation value satisfies
the covariant conservation equation and gives a reasonable representation of
the energy-momentum of the particles present ab initio. It does not, however,
represent the creation or annihilation of particles by the gravitational field
as it vanishes everywhere in the example given above, In any normal situation

this creation or annihilation may be neglected to a high order of accuracy,

Conclusion

In classical theory physically reasonable matter cannot be created or
annihilated by a gravitational field, In quantum theory creation and annihilation
are possible but in any normal field the rate would be utterly negligible, It

is only near a space-time singularity that it might become significant,
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