———

FROM UNSTABLE MINKOWSKI SPACE TO THE
INFLATIONARY UNIVERSE

E. Gunzig and P. Nardone,

Université Libre de Bruxelles, Faculté des Sciences,

1050 Brussels, Belgium.



ABSTRACT

It is shown that Minkowski Space is unstable in
the context of semi-classical gravity. There exists a thres-
hold mass, of the quantized matter field, which marks the di-
viding Tine between stable and unstable vacuum fluctuations
of matter in flat space-time. The Minkowski vacuum gravitatio-
nal-matter system undergoes a phase transition above this
"critical point", the new phase being a self-consistently
generated De Sitter Euclidean Cosmology. Its total energy
is degenerate with respect to that of empty Minkowski space-
time. It represents an appropriate candidate for the prime-
val configuration of an inflationary-like universe.



An outstanding problem in the theory of gravitation
is the stability of Minkowski Space. For gravity coupled to
matter, treated as a classical source subject to conventio-
nal energy requirements, Minkowski Space has been proven
to be stab]e1 . The situation is more intricate when the source
is a quantum field, for then particle creation may occur.

This Teads us to pose an essential question, to wit : Is empty
Minkowski Flat Space-Time the true ground-state of semi-clas-
sical gravity?

The purpose of the present work is to show, in the
simple framework of a scalar massive quantum field coupled
non-minimally to classical gravitation, that the interplay
between this coupling and the substraction procedure requi-
red by the quantum nature of the matter field Teads to an
instability of Minkowski Spacez)
timate interrelation between this state of affairs and the

Moreover, we show the in-

existence of the recently suggested non-standard big-bang
cosmo]ogies3lThese Tatter are endowed with a cooperative
process in which massive matter constituents, as well as the
embedding large scale gravitational field, engender each
other mutually in a self-consistent feedback mechanism, out
of an initial flat Minkowski Space: the creation of each
induces the creation of the other due to their gravitatio-
nal coupling.

More precisely, we show that Minkowski Space is
characterized by a threshold value for the dimensionless
parameter Km* (kK =c¢=1), where K is the gravitational
coupling constant and wm is the mass of .the quantized matter
field; this threshold marks the dividing 1ine between stable
and unstable vacuum fluctuations of matter in the Minkowskian



background. Its value is precisely the same as the lower
bound ensuring the existence of the above-mentioned cosmo-
logies. In other words, the existence of these self-consis-
tent cosmologies and the instability of empty Minkowski
Space are part and parcel of a common mechanism.

The dynamical mode, whose (in)stability character
plays a crucial role in our argument is the large scale com-
ponent of the gravitational field, represented by the sole
gravitational degree of freedom left over by the homogeneity
and isotropy requirements. As is well known this can be re-
presented by a classical massless scalar field c#(x) (propor-
tional to (d&tngﬂb)m The coupling of the Tatter to the mat-
ter field W(x) is then described by the semi-classical action
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A11 geometrical quantities therein are Minkowskian. We postu-
late that a trivial dynamical realization of this action be
empty Minkowski Space. This postulate suffices to fix the sub-
'straction procedure necessary to calculate the substracted
mean square ¢( $*)° . Thus we put <¢9*° = o in Minkowski
Space : b= f% [ this constant is fixed by the re-
quirement that the free 4>- part of the action gives rise

to the usual free gravitational action IR SJ-;‘ R when

4> = constant J. This prescription also defines the sub-

3,4)

straction procedure uniquely for all non-trivial realizations™’
of the dynamical equations.

oY + X km=¢*'¢ = o (2)

O¢ - Lm0 =0 | (3)
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We now set out to examine the stability of their
trivial Minkowski solution. To this end we analyze the lineari-
zed dynamical behavior of a small time-dependent perturbation

d(t) affecting the Minkowskian background for t ) t,
(to is an arbitrary time), i.e.: :

ble)= (%)”’-(uscm s Sty =o0 , t gt (4)
‘Equation (2) then fixes the corresponding response (for £ > & )
of the matter field 1 XS 2N , where the substraction,

following our general prescription, eliminates the zero-point
energy corresponding to the effective mass m*e)= m* (1 +7.8t'_t))

Equation (3), which furnishes the feedback response to & ({%*)*
for the geometrical perturbation §ce) lTeads then to

a simple algebraic relation for the Laplace transform §™¢sy
of $ () [ where a dot means differentiation with
respect to time t ]
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It suffices to know that . is an even function of A
asymptotically vanishing for | $s) — ee , whose maximum

g (o) =6—"’-;;_ . It follows that if 2";’;"‘;171 , then 5%
haf two real symmetric poles and its inverse Laplace transform
% (&) [as well as &(v) 7] according grows exponen-
tially with time. On the contr‘ary, in the case g';“;a_ 4 A ,

$(t) exhibits bounded oscillating behavior. This closes the

proof of the existence of a threshold value for rm* ( K?ntk: 239 W%)

which renders the vacuum Minkowski Space solution unstable.



This property, together with the existence of the

self-consistent cosmologies characterized by the same threshold

tﬁ~n§h , opens the way to a possible new vision of the cos-
mological history of the universe. Indeed, the existence of
a threshold parameter for instability is strongly reminiscent
of critical behavior in phase transition theory. We therefore
suggest that Kﬂﬂth plays the role of a critical point: below
this value, the matter-gravitational system is stable correspon-

~-ding to the Minkowski vacuum phase; when the parameter passes

through its critical value hm*, , new non-trivial solutions
of equations (2, 3) arise, and the system undergoes a phase
transition, the new phase being a non-trivial self-consistent
cosmology. The particles so created in the very early universe

5)

Scheme. An alternative possibility however is that they are

6)

primitive black holes, the primeval source of temperature”’.

were 1nterpreted as those required by the Grand Unification

Among these self-consistent cosmologies, there is
one which plays a special role: the Euclidean De Sitter Universe
Indeed, a stability analysis performed along the same lines
as in the Minkowski case indicates the stability of this solu-

2,7)

tion Next, the Euclidean De Sitter universe is nothing but

the Steady State Cosmo1ogy8)

, the driving action of the Hoyl's
"C-field" being replaced in the self-consistent scheme by a
negative pressure. This Tatter characterizes these cosmologies
wherein it expresses phenomenologically the spontaneous cre-
ation of massive matter. This spontaneous creation is a direct
consequence of the attractive character of gravitation; it 1is
indeed the negative sign accompanying the free ¢-—part of the
action (1), hence the Minkowskian negative energy carried by
the cosmological field which opens the way to these non-Minkows-
kian realizations of this dynamics. A crucial point is that
their total energy is degenerate with respect to that of Empty

Minkowski Space Time. Indeed, the effective varying mass

3).
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Mi(x) = zm <b(x)may induce creation of positive energy matter at
the expense of this negative energy cosmological reservoir,
keeping the total Minkowskian energy unchanged. ’

This then is able to provide the "early stretch"
of Steady-State behavior required in the framework of Inflatio-
nary Mode]sg) and solves both the flatness and the particle-ho-
rizon problem. As such, it represents an alternative to Guth's
idea that the energy density of the false vacuum associated to
the supercooled phase drives the "Steady-State stretch". Instead
it is the instability of Minkowski vacuum which forces the
system, in the present context, to undergo, above Km}, , a phase
transition from an initial empty Minkowski Space to the self-consis-

tent De Sitter Universe.

In the framework of Guth's model, it is the transi-
tion from the false vacuum to the true one which releases a
considerable amount of energy (and entropy) primarily respon-
sible for the present 3»°K radiation background. In our alter-
native, by contrast, it is the decay of the supermassive initial
matter constituents which provides the required energy.

In conclusion, let us summarize the chain of facts
presented above in the shape of the following Cosmological
History: Minkowski Space is unable to sustain vacuum matter-
gravitational interactions and therefore transits to a new
phase, the De Sitter Universe. The latter, an essential ingre-
dient of inflationary-type universes, so appears as the natural
primeval stage of physical space-time. After decay of the primeval
constituents there is a turnover to the present cosmological
free-expansion configuration. The universe built up in this
way, thus appears as a non trivial energetically degenerate



alternative to the quantum flat vacuum.

Clearly the present development, as well as that
of Guth's, is far to embryonic to permit any kind of judge-
ment or preference. What are our very massy constituents
(more than ten times the Planck mass)? If they are indeed
black holes, can they be simulated by a quantum field, and
if not is Minkowski space nevertheless unstable with respect
to such massy fluctuations? (On very general grounds one
would think so). In Guth's cosmology, there are mysteries
equally enigmatic. What is the source of temperature? (or
equivalently who made the initial vacuum false?). And why
from a field-theoretic point of view,is the cosmological
constant substracted in such a way as to vanish now and not
then?

In spite of all these uncertainties, the infla-
tionary idea is clearly to be exploited as fully as pos-
sible, since for the present it is the only mechanism
which offers the possibility of success in confronting the
problem of causality posed by the big-bang.
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